OFFSET
0,5
COMMENTS
T(n,k)=n*(n-k)^(k-1)*k^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention.
LINKS
Stanislav Sykora, Table of n, a(n) for rows 0..100
S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(5), with b=1.
EXAMPLE
First rows of the triangle, all summing up to n^n:
1
0 1
0 4 0
0 9 18 0
0 16 192 48 0
0 25 1200 1800 100 0
PROG
(PARI) seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=n*(n-k*b)^(k-1)*(k*b)^(n-k)*binomial(n, k); ); );
return(v); }
a=seq(100, 1);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Stanislav Sykora, Jun 21 2014
STATUS
approved