login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244118
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum_{k=0..n} T(n,k)*binomial(n,k).
28
1, 0, 1, 0, -1, 3, 0, 1, -6, 16, 0, -1, 12, -48, 125, 0, 1, -24, 144, -500, 1296, 0, -1, 48, -432, 2000, -6480, 16807, 0, 1, -96, 1296, -8000, 32400, -100842, 262144, 0, -1, 192, -3888, 32000, -162000, 605052, -1835008, 4782969, 0, 1, -384, 11664, -128000, 810000, -3630312, 12845056, -38263752, 100000000
OFFSET
0,6
COMMENTS
T(n,k) = (1+k)^(k-1)*(-k)^(n-k) for k>0, where T(n,0) = 0^n.
LINKS
S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(4), with b=-1.
EXAMPLE
The first rows of the triangle are:
1
0 1
0 -1 3
0 1 -6 16
0 -1 12 -48 125
0 1 -24 144 -500 1296
PROG
(PARI) seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k); );
); return(v); }
a=seq(100, -1);
KEYWORD
sign,tabl
AUTHOR
Stanislav Sykora, Jun 21 2014
STATUS
approved