login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341856
Array read by antidiagonals: T(n,k) is the number of rooted strong triangulations of a disk with n interior nodes and 3+k nodes on the boundary.
9
1, 0, 1, 0, 1, 3, 0, 1, 6, 13, 0, 1, 10, 36, 68, 0, 1, 15, 80, 228, 399, 0, 1, 21, 155, 610, 1518, 2530, 0, 1, 28, 273, 1410, 4625, 10530, 16965, 0, 1, 36, 448, 2933, 12165, 35322, 75516, 118668, 0, 1, 45, 696, 5628, 28707, 102548, 272800, 556512, 857956
OFFSET
0,6
COMMENTS
A strong triangulation is one in which no interior edge joins two nodes on the boundary. Except for the single triangle which is enumerated by T(0,0) these are the 3-connected triangulations.
LINKS
William T. Tutte, A census of planar triangulations, Canad. J. Math. 14 (1962), 21-38.
FORMULA
T(n,0) = A000260(n) = 2*(4*n+1)!/((3*n+2)!*(n+1)!).
T(n,m) = (3*(m+2)!*(m-1)!/(3*n+3*m+3)!) * Sum_{j=0..min(m,n-1)} (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!) for m > 0.
EXAMPLE
Array begins:
=======================================================
n\k | 0 1 2 3 4 5 6
----+--------------------------------------------------
0 | 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 ...
2 | 3 6 10 15 21 28 36 ...
3 | 13 36 80 155 273 448 696 ...
4 | 68 228 610 1410 2933 5628 10128 ...
5 | 399 1518 4625 12165 28707 62230 125928 ...
6 | 2530 10530 35322 102548 267162 638624 1422204 ...
...
PROG
(PARI) T(n, m)=if(m==0, 2*(4*n+1)!/((3*n+2)!*(n+1)!), (3*(m+2)!*(m-1)!/(3*n+3*m+3)!)*sum(j=0, min(m, n-1), (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!)))
CROSSREFS
Columns k=0..3 are A000260, A242136, A341917, A341918.
Antidiagonal sums give A341919.
Cf. A146305 (not necessarily strong triangulations), A210664, A341923, A342053.
Sequence in context: A243984 A100485 A143397 * A339350 A244118 A273155
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 23 2021
STATUS
approved