login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243984
Sum of non-twin divisors of n.
3
1, 3, 0, 1, 6, 8, 8, 9, 9, 18, 12, 12, 14, 24, 15, 25, 18, 35, 20, 36, 28, 36, 24, 36, 31, 42, 36, 50, 30, 63, 32, 57, 44, 54, 36, 75, 38, 60, 52, 66, 42, 92, 44, 78, 69, 72, 48, 100, 57, 93, 68, 92, 54, 116, 72, 114, 76, 90, 60, 125, 62, 96, 84, 121, 84, 140, 68, 120
OFFSET
1,2
COMMENTS
See A243917 for definition of non-twin divisor.
LINKS
FORMULA
a(n) = A000203(n) - A243983(n).
EXAMPLE
The divisors of 40 are 1, 2, 4, 5, 8, 10, 20, 40. Of these, 1, 5, 20, 40 are non-twin divisors. So a(40) = the sum of these divisors, which is 66.
MAPLE
f:= proc(n) local d; d:= numtheory[divisors](n); convert(d minus map(`+`, d, 2) minus map(`+`, d, -2), `+`) end proc:
map(f, [$1..100]); # Robert Israel, Aug 17 2014
MATHEMATICA
a243984[n_Integer] := Total[Select[Divisors[n], If[And[# <= 2 || Divisible[n, # - 2] == False, Divisible[n, # + 2] == False], True, False] &]]; a243984 /@ Range[68] (* Michael De Vlieger, Aug 17 2014 *)
PROG
(PARI)
a(n) = s=0; fordiv(n, d, if(!((d>2 && n%(d-2)==0) || (d<=n-2 && n%(d+2)==0)), s+=d)); s
for(n=1, 200, print1(a(n), ", ")) \\ Colin Barker, Jun 29 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved