login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243917
Number of non-twin divisors of n.
6
1, 2, 0, 1, 2, 2, 2, 2, 1, 4, 2, 1, 2, 4, 1, 3, 2, 4, 2, 4, 2, 4, 2, 2, 3, 4, 2, 4, 2, 5, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 6, 2, 4, 3, 4, 2, 4, 3, 6, 2, 4, 2, 6, 4, 6, 2, 4, 2, 4, 2, 4, 2, 5, 4, 6, 2, 4, 2, 6, 2, 6, 2, 4, 3, 4, 4, 6, 2, 6, 3, 4, 2, 5, 4, 4, 2, 6, 2, 9, 4, 4, 2, 4, 4, 6
OFFSET
1,2
COMMENTS
A divisor k of n is non-twin if neither the positive values of k - 2 nor k + 2 divide n.
LINKS
FORMULA
a(n) = A000005(n) - A243865(n).
EXAMPLE
The positive divisors of 12 are: 1, 2, 3, 4, 6, 12. Of these, 1 and 3 are twin divisors, 2, 4 and 6 are also twin divisors. The unique non-twin divisor is therefore 12. So a(12) = the number of these divisors, which is 1.
MATHEMATICA
a243917[n_Integer] := Length[Select[Divisors[n], If[And[# <= 2 || Divisible[n, # - 2] == False, Divisible[n, # + 2] == False], True, False] &]]; a243917 /@ Range[120] (* Michael De Vlieger, Aug 17 2014 *)
nntd[n_]:=Module[{d=Select[Divisors[n], #>2&], t}, t=Count[d, _?(!Divisible[ n, #-2] && !Divisible[ n, #+2]&)]; If[!Divisible[ n, 3], t++]; If[ Divisible[ n, 2] && !Divisible[n, 4], t++]; t]; Array[nntd, 100] (* Harvey P. Dale, May 27 2016 *)
PROG
(PARI) a(n) = sumdiv(n, d, (((d<=2) || (n % (d-2))) && (n % (d+2)))); \\ Michel Marcus, Jun 25 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected by Michel Marcus, Jun 27 2014
STATUS
approved