login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243918
a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 2^k)^k.
6
1, 4, 32, 814, 86600, 39560554, 75654970772, 594996059517934, 19035905851947436400, 2460857798358946973785234, 1280109151917797032199865564812, 2672783800502564772495577135824089014, 22366199286781599568269093307412768076442280
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 2^k)^(n-k) * 2^(k^2).
O.g.f.: Sum_{n>=0} (1 + 2^n)^n * x^n / (1-x)^(n+1).
O.g.f.: Sum_{n>=0} 2^(n^2) * x^n / (1 - (1+2^n)*x)^(n+1).
E.g.f.: exp(x) * Sum_{n>=0} (1 + 2^n)^n * x^n / n!.
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jun 18 2014
EXAMPLE
O.g.f.: A(x) = 1 + 4*x + 32*x^2 + 814*x^3 + 86600*x^4 + 39560554*x^5 +...
where the g.f. may be expressed by the series identity:
A(x) = 1/(1-x) + 3*x/(1-x)^2 + 5^2*x^2/(1-x)^3 + 9^3*x^3/(1-x)^4 + 17^4*x^4/(1-x)^5 + 33^5*x^5/(1-x)^6 + 65^6*x^6/(1-x)^7 +...
A(x) = 1/(1-2*x) + 2*x/(1-3*x)^2 + 2^4*x^2/(1-5*x)^3 + 2^9*x^3/(1-9*x)^4 + 2^16*x^4/(1-17*x)^5 + 2^25*x^5/(1-33*x)^6 + 2^36*x^6/(1-65*x)^7 +...
Illustration of initial terms:
a(0) = 1;
a(1) = 1 + (1+2);
a(2) = 1 + 2*(1+2) + (1+2^2)^2;
a(3) = 1 + 3*(1+2) + 3*(1+2^2)^2 + (1+2^3)^3;
a(4) = 1 + 4*(1+2) + 6*(1+2^2)^2 + 4*(1+2^3)^3 + (1+2^4)^4;
a(5) = 1 + 5*(1+2) + 10*(1+2^2)^2 + 10*(1+2^3)^3 + 5*(1+2^4)^4 + (1+2^5)^5; ...
Also, by a binomial identity we have
a(0) = 1;
a(1) = 2 + 2;
a(2) = 2^2 + 2*(1+2)*2 + 2^4;
a(3) = 2^3 + 3*(1+2)^2*2 + 3*(1+2^2)*2^4 + 2^9;
a(4) = 2^4 + 4*(1+2)^3*2 + 6*(1+2^2)^2*2^4 + 4*(1+2^3)*2^9 + 2^16;
a(5) = 2^5 + 5*(1+2)^4*2 + 10*(1+2^2)^3*2^4 + 10*(1+2^3)^2*2^9 + 5*(1+2^4)*2^16 + 2^25; ...
MATHEMATICA
Table[Sum[Binomial[n, k]*(1+2^k)^k, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 18 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(1+2^k)^k)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(1+2^k)^(n-k)*2^(k^2))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A134087 A132854 A136471 * A370544 A298896 A231991
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 17 2014
STATUS
approved