login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244004
a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 3^k)^k.
2
1, 5, 109, 22265, 45300601, 865092893645, 151339416167296549, 240067372975786948895105, 3437874756032842865408439504241, 443629315988897178081546025182658298645, 515464811455682924553846499988261249729439172189
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 3^k)^(n-k) * 3^(k^2).
O.g.f.: Sum_{n>=0} (1 + 3^n)^n * x^n / (1-x)^(n+1).
O.g.f.: Sum_{n>=0} 3^(n^2) * x^n / (1 - (1+3^n)*x)^(n+1).
E.g.f.: exp(x) * Sum_{n>=0} (1 + 3^n)^n * x^n / n!.
a(n) ~ 3^(n^2). - Vaclav Kotesovec, Jun 18 2014
EXAMPLE
O.g.f.: A(x) = 1 + 5*x + 109*x^2 + 22265*x^3 + 45300601*x^4 +...
where the g.f. may be expressed by the series identity:
A(x) = 1/(1-x) + 4*x/(1-x)^2 + 10^2*x^2/(1-x)^3 + 28^3*x^3/(1-x)^4 + 82^4*x^4/(1-x)^5 + 244^5*x^5/(1-x)^6 + 730^6*x^6/(1-x)^7 +...
A(x) = 1/(1-2*x) + 3*x/(1-4*x)^2 + 3^4*x^2/(1-10*x)^3 + 3^9*x^3/(1-28*x)^4 + 3^16*x^4/(1-82*x)^5 + 3^25*x^5/(1-244*x)^6 + 3^36*x^6/(1-730*x)^7 +...
Illustration of initial terms:
a(0) = 1;
a(1) = 1 + (1+3);
a(2) = 1 + 2*(1+3) + (1+3^2)^2;
a(3) = 1 + 3*(1+3) + 3*(1+3^2)^2 + (1+3^3)^3;
a(4) = 1 + 4*(1+3) + 6*(1+3^2)^2 + 4*(1+3^3)^3 + (1+3^4)^4;
a(5) = 1 + 5*(1+3) + 10*(1+3^2)^2 + 10*(1+3^3)^3 + 5*(1+3^4)^4 + (1+3^5)^5; ...
Also, by a binomial identity we have
a(0) = 1;
a(1) = 2 + 3;
a(2) = 2^2 + 2*(1+3)*3 + 3^4;
a(3) = 2^3 + 3*(1+3)^2*3 + 3*(1+3^2)*3^4 + 3^9;
a(4) = 2^4 + 4*(1+3)^3*3 + 6*(1+3^2)^2*3^4 + 4*(1+3^3)*3^9 + 3^16;
a(5) = 2^5 + 5*(1+3)^4*3 + 10*(1+3^2)^3*3^4 + 10*(1+3^3)^2*3^9 + 5*(1+3^4)*3^16 + 3^25; ...
MATHEMATICA
Table[Sum[Binomial[n, k]*(1+3^k)^k, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 18 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(1+3^k)^k)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(1+3^k)^(n-k)*3^(k^2))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A358781 A188457 A245106 * A003465 A177680 A281762
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 17 2014
STATUS
approved