OFFSET
0,8
LINKS
Alois P. Heinz, Antidiagonals n = 0..20, flattened
FORMULA
A(n,k) = k^A000045(n).
A(0,k) = 1, A(1,k) = k, A(n,k) = A(n-1,k) * A(n-2,k) for n>=2.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 4, 9, 16, 25, 36, ...
0, 1, 8, 27, 64, 125, 216, ...
0, 1, 32, 243, 1024, 3125, 7776, ...
0, 1, 256, 6561, 65536, 390625, 1679616, ...
MAPLE
A:= (n, k)-> k^(<<1|1>, <1|0>>^n)[1, 2]:
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[0, 0] = 1; A[n_, k_] := k^Fibonacci[n]; Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 11 2015 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jun 17 2014
STATUS
approved