login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369738
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(1 - (1+x)^k).
4
1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -3, 2, -1, 0, 1, -4, 3, 4, 1, 0, 1, -5, 4, 21, -20, -1, 0, 1, -6, 5, 56, -63, 8, 1, 0, 1, -7, 6, 115, -104, -423, 184, -1, 0, 1, -8, 7, 204, -95, -2464, 1899, -464, 1, 0, 1, -9, 8, 329, 36, -8245, 1696, 15201, -1648, -1, 0
OFFSET
0,8
FORMULA
T(0,k) = 1; T(n,k) = -k * (n-1)! * Sum_{j=1..min(k,n)} binomial(k-1,j-1) * T(n-j,k)/(n-j)!.
T(n,k) = Sum_{j=0..n} k^j * Stirling1(n,j) * A000587(j).
EXAMPLE
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, -6, ...
0, 1, 2, 3, 4, 5, 6, ...
0, -1, 4, 21, 56, 115, 204, ...
0, 1, -20, -63, -104, -95, 36, ...
0, -1, 8, -423, -2464, -8245, -21096, ...
0, 1, 184, 1899, 1696, -21275, -124344, ...
PROG
(PARI) a000587(n) = sum(k=0, n, (-1)^k*stirling(n, k, 2));
T(n, k) = sum(j=0, n, k^j*stirling(n, j, 1)*a000587(j));
CROSSREFS
Columns k=0..5 give A000007, A033999, (-1)^n * A062267(n), A369751, A369752, A369753.
Main diagonal gives A369754.
Sequence in context: A256140 A321391 A244003 * A360763 A332670 A118344
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Jan 30 2024
STATUS
approved