OFFSET
0,8
FORMULA
T(0,k) = 1; T(n,k) = -k * (n-1)! * Sum_{j=1..min(k,n)} binomial(k-1,j-1) * T(n-j,k)/(n-j)!.
T(n,k) = Sum_{j=0..n} k^j * Stirling1(n,j) * A000587(j).
EXAMPLE
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, -6, ...
0, 1, 2, 3, 4, 5, 6, ...
0, -1, 4, 21, 56, 115, 204, ...
0, 1, -20, -63, -104, -95, 36, ...
0, -1, 8, -423, -2464, -8245, -21096, ...
0, 1, 184, 1899, 1696, -21275, -124344, ...
PROG
(PARI) a000587(n) = sum(k=0, n, (-1)^k*stirling(n, k, 2));
T(n, k) = sum(j=0, n, k^j*stirling(n, j, 1)*a000587(j));
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Jan 30 2024
STATUS
approved