login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369752
Expansion of e.g.f. exp(1 - (1+x)^4).
1
1, -4, 4, 56, -104, -2464, 1696, 181184, 462016, -17069824, -141580544, 1593913856, 33015560704, -47193585664, -6973651011584, -50207289585664, 1214484253413376, 25500259291480064, -72069247145590784, -8696105637665603584, -81680899029758541824
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = -4 * (n-1)! * Sum_{k=1..min(4,n)} binomial(3,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 4^k * Stirling1(n,k) * A000587(k).
D-finite with recurrence a(n) +4*a(n-1) +12*(n-1)*a(n-2) +12*(n-1)*(n-2)*a(n-3) +4*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 02 2024
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[1-(1+x)^4], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 29 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)^4)))
CROSSREFS
Column k=4 of A369738.
Sequence in context: A322099 A009644 A196180 * A156483 A212328 A214615
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 30 2024
STATUS
approved