login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369751
Expansion of e.g.f. exp(1 - (1+x)^3).
2
1, -3, 3, 21, -63, -423, 1899, 15201, -72063, -832491, 3105459, 60090093, -110508543, -5224722831, -3828328677, 510699368313, 2104026859521, -52582823289171, -473592954347037, 5168227121231301, 92434892126557761, -357595962971807223, -17085974691782295477
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = -3 * (n-1)! * Sum_{k=1..min(3,n)} binomial(2,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 3^k * Stirling1(n,k) * A000587(k).
D-finite with recurrence a(n) +3*a(n-1) +6*(n-1)*a(n-2) +3*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Feb 02 2024
MAPLE
A369751 := proc(n)
option remember ;
if n =0 then
1;
else
add( binomial(2, k-1) * procname(n-k)/(n-k)!, k=1..min(3, n)) ;
-3*(n-1)!*% ;
end if;
end proc:
seq(A369751(n), n=0..20) ; # R. J. Mathar, Feb 02 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)^3)))
CROSSREFS
Column k=3 of A369738.
Sequence in context: A130723 A369078 A209528 * A214778 A180754 A224091
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 30 2024
STATUS
approved