|
|
A130723
|
|
Least common multiple of 3 and n^2+n+1.
|
|
2
|
|
|
3, 3, 21, 39, 21, 93, 129, 57, 219, 273, 111, 399, 471, 183, 633, 723, 273, 921, 1029, 381, 1263, 1389, 507, 1659, 1803, 651, 2109, 2271, 813, 2613, 2793, 993, 3171, 3369, 1191, 3783, 3999, 1407, 4449, 4683, 1641, 5169, 5421, 1893, 5943, 6213, 2163, 6771
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
|
|
FORMULA
|
From Colin Barker, Mar 08 2017: (Start)
G.f.: 3*(1 + x + 7*x^2 + 10*x^3 + 4*x^4 + 10*x^5 + 7*x^6 + x^7 + x^8) / ((1 - x)^3*(1 + x + x^2)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>8.
(End)
|
|
MATHEMATICA
|
Table[LCM[3, n^2+n+1], {n, 0, 60}] (* Harvey P. Dale, Mar 03 2017 *)
|
|
PROG
|
(PARI) a(n) = lcm(3, n^2+n+1) \\ Michel Marcus, Jul 11 2013
(PARI) Vec(3*(1 + x + 7*x^2 + 10*x^3 + 4*x^4 + 10*x^5 + 7*x^6 + x^7 + x^8) / ((1 - x)^3*(1 + x + x^2)^3) + O(x^100)) \\ Colin Barker, Mar 08 2017
|
|
CROSSREFS
|
Cf. A109044.
Sequence in context: A159910 A172485 A230647 * A209528 A214778 A180754
Adjacent sequences: A130720 A130721 A130722 * A130724 A130725 A130726
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
W. Neville Holmes, Jul 04 2007
|
|
EXTENSIONS
|
Corrected by Harvey P. Dale, Mar 03 2017
|
|
STATUS
|
approved
|
|
|
|