login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192989
Expansion of e.g.f.: exp((1+x)^3 - 1).
6
1, 3, 15, 87, 585, 4383, 35919, 318195, 3015441, 30354075, 322626159, 3603292047, 42120047385, 513557128503, 6512375759535, 85673471945067, 1166675225150241, 16413589529042355, 238151194659626319, 3558129109803374535
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(k) * 3^k.
Conjecture: a(n) -3*a(n-1) +6*(-n+1)*a(n-2) -3*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, May 12 2014
Remark: the above conjectured recurrence is true and can be easily obtained from the e.g.f. - Emanuele Munarini, Aug 31 2017
a(n) ~ 3^(n/3-1/2) * exp(-2*n/3 + 3^(1/3)*n^(2/3) + 3^(-1/3)*n^(1/3) - 2/3) * n^(2*n/3) * (1 + 23/(54*(n/3)^(1/3)) + 3149/(29160*(n/3)^(2/3))). - Vaclav Kotesovec, Jul 15 2014
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 15*x^2/2! + 87*x^3/3! + 585*x^4/4! +...
MATHEMATICA
CoefficientList[Series[E^((1+x)^3-1), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 15 2014 *)
Table[Sum[ (-1)^(n - k) Abs[StirlingS1[n, k]] 3^k BellB[k], {k, 0, n}], {n, 0, 20}] (* Emanuele Munarini, Aug 31 2017 *)
PROG
(PARI) {a(n)=if(n<0, 0, n!*polcoeff(exp((1+x)^3-1+x*O(x^n)), n))}
(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k)*3^k)}
(Maxima)
a(n) := sum((-1)^(n-k)*abs(stirling1(n, k))*3^k*belln(k), k, 0, n);
makelist(a(n), n, 0, 12); /* Emanuele Munarini, Aug 31 2017 */
(Magma) [(&+[3^k*Bell(k)*StirlingFirst(n, k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 25 2019
(Sage) [sum((-1)^(n-k)*3^k*bell_number(k)*stirling_number1(n, k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 25 2019
(GAP) List([0..20], n-> Sum([0..n], k-> (-1)^(n-k)*3^k*Bell(k)* Stirling1(n, k) )); # G. C. Greubel, Jul 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 13 2011
STATUS
approved