login
A368972
Expansion of (1/x) * Series_Reversion( x * (1-x+x^3)^3 ).
2
1, 3, 15, 88, 564, 3819, 26851, 194025, 1431498, 10735548, 81580008, 626697786, 4858272450, 37954323885, 298487957670, 2361025981335, 18770449480056, 149897172319290, 1201831832357041, 9670416882346848, 78062823843714528, 631988009034161246
OFFSET
0,2
COMMENTS
a(702) is negative.
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^k * binomial(3*n+k+2,k) * binomial(4*n-2*k+2,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x+x^3)^3)/x)
(PARI) a(n, s=3, t=3, u=0) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A368964.
Sequence in context: A192989 A316666 A192253 * A370472 A365128 A127785
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 10 2024
STATUS
approved