OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(s*k,n-k).
D-finite with recurrence 205*(5*n+6)*(5*n+2)*(5*n+3)*(5*n+4)*(n+1)*a(n) +9*(-5948592*n^5+11369145*n^4 -5182620*n^3 -351495*n^2+204302*n-6560) *a(n-1) +243*(-801282*n^5 +14391105*n^4 -55889790*n^3 +90254895*n^2 -66199848*n +18182560)*a(n-2) +6561*(3*n-5) *(3*n-4)*(93048*n^3 -579621*n^2 +1227037*n -878874)*a(n-3) +48715425*(n-3) *(3*n-4)*(3*n-7) *(3*n-5)*(3*n-8)*a(n-4)=0. - R. J. Mathar, Dec 04 2023
From Seiichi Manyama, Sep 20 2024: (Start)
G.f.: (1/x) * Series_Reversion( x / (1+x+x^2)^3 ).
G.f.: B(x)^3, where B(x) is the g.f. of A255673. (End)
MAPLE
A365128 := proc(n)
add(binomial(3*(n+1), k) * binomial(k, n-k), k=0..n) ;
%/(n+1) ;
end proc:
seq(A365128(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
PROG
(PARI) a(n, s=1, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(s*k, n-k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2023
STATUS
approved