login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316666
Number of simple relaxed compacted binary trees of right height at most one with no sequences on level 1 and no final sequences on level 0.
1
1, 0, 1, 3, 15, 87, 597, 4701, 41787, 413691, 4512993, 53779833, 695000919, 9680369943, 144560191149, 2303928046437, 39031251610227, 700394126116851, 13270625547477177, 264748979672169681, 5547121478845459983, 121784530649198053263, 2795749225338111831429, 66981491857058929294653
OFFSET
0,4
COMMENTS
A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and at most n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. It is called simple if for nodes with two pointers both point to the same node. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. See the Wallner link.
a(n) is one of two "basis" sequences for sequences of the form a(0)=a, a(1)=b, a(n) = n*a(n-1) + (n-1)*a(n-2), the second basis sequence being A096654 (with 0 appended as a(0)). The sum of these sequences is listed as A000255. - Gary Detlefs, Dec 11 2018
LINKS
Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic Enumeration of Compacted Binary Trees, arXiv:1703.10031 [math.CO], 2017.
FORMULA
E.g.f.: (3*exp(-z)+z-2)/(1-z)^2.
a(n) ~ (3*exp(-1) - 1) * n * n!. - Vaclav Kotesovec, Jul 12 2018
a(n) = 3*round((n+2)*n!/e) - (n+2)*n!. - Gary Detlefs, Dec 11 2018
MAPLE
aseq := n-> 3*round((n+2)*n!/exp(1))-(n+2)*n!: bseq := n-> (n+2)*n!- 2* round((n+2)*n!/exp(1)): s := (a, b, n)-> a*aseq(n) + b*bseq( n): seq(s(1, 0, n), n = 0..20); # Gary Detlefs, Dec 11 2018
MATHEMATICA
terms = 24;
CoefficientList[(3E^-z+z-2)/(1-z)^2 + O[z]^terms, z] Range[0, terms-1]! (* Jean-François Alcover, Sep 14 2018 *)
PROG
(PARI) Vec(serlaplace((3*exp(-x + O(x^25)) + x - 2)/(1 - x)^2)) \\ Andrew Howroyd, Jul 10 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3*Exp(-x) + x-2)/(1-x)^2 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 12 2018
CROSSREFS
Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952, A288953 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of simple relaxed compacted binary trees of right height at most one, see the Wallner link).
Sequence in context: A246538 A132371 A192989 * A192253 A368972 A370472
KEYWORD
nonn
AUTHOR
Michael Wallner, Jul 10 2018
STATUS
approved