login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369737
a(n) = b(n, 1/2) where b(n, x) = (Pi/4)*(Y(0, x)*J(n, x) - J(0, x)*Y(n, x)) and Y, J are Bessel functions.
0
0, 1, 4, 31, 368, 5857, 116772, 2796671, 78190016, 2499283841, 89896028260, 3593341846559, 158017145220336, 7581229628729569, 394065923548717252, 22060110489099436543, 1323212563422417475328, 84663543948545618984449, 5755797775937679673467204, 414332776323564390870654239
OFFSET
0,3
MAPLE
b := (n, x) -> (Pi/4)*(BesselY(0, x)*BesselJ(n, x)-BesselJ(0, x)*BesselY(n, x)):
a := n -> simplify(b(n, 1/2)): seq(a(n), n = 0..19);
MATHEMATICA
a = (Pi/4)*(BesselY[0, 1/2] * BesselJ[n, 1/2] - BesselJ[0, 1/2] * BesselY[n, 1/2]); Table[Round[a], {n, 0, 19}]
CROSSREFS
Sequence in context: A128709 A138860 A266757 * A198865 A145087 A215529
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 30 2024
STATUS
approved