|
|
A093985
|
|
a(1) = 1, a(2) = 2; a(n+1) = 2n*a(n) - a(n-1). Symmetrically, a(n) = (a(n-1) + a(n+1))/((n-1) + (n+1)).
|
|
4
|
|
|
1, 2, 7, 40, 313, 3090, 36767, 511648, 8149601, 146181170, 2915473799, 63994242408, 1532946343993, 39792610701410, 1112660153295487, 33340011988163200, 1065767723467926913, 36202762585921351842, 1302233685369700739399, 49448677281462706745320
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*2^(n-2*k-1)*(n-2*k-1)!*(binomial(n-k-1,k))^2. Cf. A058798. - Peter Bala, Aug 01 2013
|
|
EXAMPLE
|
a(3)=7 because 2*2*a(2) - a(1) = 7.
|
|
MAPLE
|
a[1]:=1: a[2]:=2: for n from 2 to 21 do a[n+1]:=2*n*a[n]-a[n-1] od: seq(a[n], n=1..21); # Emeric Deutsch, Jul 31 2005
|
|
MATHEMATICA
|
nxt[{n_, a_, b_}]:={n+1, b, 2*n*b-a}; NestList[nxt, {2, 1, 2}, 20][[All, 2]] (* Harvey P. Dale, Jan 09 2021 *)
|
|
PROG
|
(Magma) I:=[1, 2]; [n le 2 select I[n] else 2*(n-1)*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 15 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|