login
A308876
Expansion of e.g.f. exp(x)*(1 - x)/(1 - 2*x).
3
1, 2, 7, 40, 317, 3166, 37987, 531812, 8508985, 153161722, 3063234431, 67391157472, 1617387779317, 42052082262230, 1177458303342427, 35323749100272796, 1130359971208729457, 38432239021096801522, 1383560604759484854775, 52575302980860424481432
OFFSET
0,2
COMMENTS
Binomial transform of A002866.
LINKS
FORMULA
a(n) = 1 + Sum_{k=1..n} binomial(n,k) * 2^(k-1) * k!.
a(n) = A010844(n) - A067273(n).
a(n) ~ n! * 2^(n-1) * exp(1/2). - Vaclav Kotesovec, Jun 29 2019
a(n) = Sum_{k=0..n} k! * A271705(n,k). - Alois P. Heinz, Sep 12 2019
MAPLE
a:= n-> n! * add(ceil(2^(n-k-1))/k!, k=0..n):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2019
MATHEMATICA
nmax = 19; CoefficientList[Series[Exp[x] (1 - x)/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!
Table[1 + Sum[Binomial[n, k] 2^(k - 1) k!, {k, 1, n}], {n, 0, 19}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 29 2019
STATUS
approved