login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326659
T(n,k) = [0<k<=n] * n*(T(n-1,k-1)+T(n-1,k)) + [k=0 and n>=0]; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
5
1, 1, 1, 1, 4, 2, 1, 15, 18, 6, 1, 64, 132, 96, 24, 1, 325, 980, 1140, 600, 120, 1, 1956, 7830, 12720, 10440, 4320, 720, 1, 13699, 68502, 143850, 162120, 103320, 35280, 5040, 1, 109600, 657608, 1698816, 2447760, 2123520, 1108800, 322560, 40320
OFFSET
0,5
COMMENTS
[] is an Iverson bracket.
LINKS
Wikipedia, Iverson bracket
FORMULA
E.g.f. of column k: exp(x)*(x/(1-x))^k.
T(n,k) = k! * A271705(n,k).
T(n,k) = n * A073474(n-1,k-1) for n,k >= 1.
T(n,1) = n * A000522(n-1) for n >= 1.
T(n,2) = n * A093964(n-1) for n >= 1.
Sum_{k=1..n} k * T(n,k) = A327606(n).
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 2;
1, 15, 18, 6;
1, 64, 132, 96, 24;
1, 325, 980, 1140, 600, 120;
1, 1956, 7830, 12720, 10440, 4320, 720;
1, 13699, 68502, 143850, 162120, 103320, 35280, 5040;
...
MAPLE
T:= proc(n, k) option remember;
`if`(0<k and k<=n, n*(T(n-1, k-1)+T(n-1, k)), 0)+
`if`(k=0 and n>=0, 1, 0)
end:
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
T[n_ /; n >= 0, k_ /; k >= 0] := T[n, k] = Boole[0 < k <= n]*n*(T[n-1, k-1] + T[n-1, k]) + Boole[k == 0 && n >= 0];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
CROSSREFS
Columns k=0-2 give: A000012, A007526, 2*A134432(n-1).
Main diagonal gives A000142.
Row sums give A308876.
Sequence in context: A225476 A143777 A365566 * A236830 A269736 A264535
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 12 2019
STATUS
approved