login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326661
Rectangular array in 3 columns that solve the complementary equation c(n) = a(n) + b(3n), where a(1) = 1; see Comments.
3
1, 2, 7, 3, 4, 16, 5, 6, 25, 8, 9, 35, 10, 11, 43, 12, 13, 52, 14, 15, 61, 17, 18, 71, 19, 20, 79, 21, 22, 88, 23, 24, 97, 26, 27, 107, 28, 29, 115, 30, 31, 124, 32, 33, 133, 34, 36, 142, 37, 38, 151, 39, 40, 160, 41, 42, 169, 44, 45, 179, 46, 47, 187, 48
OFFSET
1,2
COMMENTS
Let A = (a(n)), B = (b(n)), and C = (c(n)). A unique solution (A,B,C) exists for the following conditions: (1) A,B,C must partition the positive integers, and (2) A and B are defined by mex (minimal excludant, as in A067017); that is, a(n) is the least "new" positive integer, and likewise for b(n).
EXAMPLE
c(1) = a(1) + b(3) >= 1 + 6, so that b(1) = mex{1} = 2; a(2) = mex{1,2} = 3; b(2) = mex{1,2,3} = 4; a(3)= mex{1,2,3,4} = 5, a(4) = mex{1,2,3,4,5} = 6, c(1) = 7.
n a(n) b(n) c(n)
---------------------------
1 1 2 7
2 3 4 16
3 5 6 25
4 8 9 35
5 10 11 43
6 12 13 52
7 14 15 61
8 17 18 74
9 19 20 79
10 21 22 88
MATHEMATICA
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
a = b = c = {}; h = 1; k = 3;
Do[Do[AppendTo[a,
mex[Flatten[{a, b, c}], Max[Last[a /. {} -> {0}], 1]]];
AppendTo[b, mex[Flatten[{a, b, c}], Max[Last[b /. {} -> {0}], 1]]], {k}];
AppendTo[c, a[[h Length[a]/k]] + Last[b]], {150}];
{a, b, c} // ColumnForm
a = Take[a, Length[c]]; b = Take[b, Length[c]];
Flatten[Transpose[{a, b, c}]](* Peter J. C. Moses, Jul 04 2019 *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Jul 16 2019
EXTENSIONS
Replaced a(0)->a(1) in NAME. - R. J. Mathar, Jun 19 2021
STATUS
approved