login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326658
a(n) = 6*floor(n/2) + ceiling((n-1)^2/2).
2
1, 0, 7, 8, 17, 20, 31, 36, 49, 56, 71, 80, 97, 108, 127, 140, 161, 176, 199, 216, 241, 260, 287, 308, 337, 360, 391, 416, 449, 476, 511, 540, 577, 608, 647, 680, 721, 756, 799, 836, 881, 920, 967, 1008, 1057, 1100, 1151, 1196, 1249, 1296, 1351, 1400, 1457, 1508, 1567, 1620, 1681
OFFSET
0,3
COMMENTS
a(n) gives the maximum number of inversions in a permutation on n + 3 symbols consisting of a single n-cycle and 3 fixed points.
Sequence is a diagonal of A326296.
FORMULA
a(n) = 6*floor(n/2) + ceiling((n-1)^2/2).
a(n) = A326296(3 + n, n) for n > 0.
From Colin Barker, Sep 13 2019: (Start)
G.f.: (1 - 2*x + 7*x^2 - 4*x^3) / ((1 - x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n >= 4.
a(n) = (-3 + 7*(-1)^n + 8*n + 2*n^2) / 4.
(End)
MATHEMATICA
Table[6*Floor[n/2] + Ceiling[(n - 1)^2/2], {n, 80}] (* Wesley Ivan Hurt, Sep 13 2019 *)
PROG
(PARI) a(n) = 6*floor(n/2) + ceil((n-1)^2/2) \\ Andrew Howroyd, Sep 23 2019
(PARI) Vec((1 - 2*x + 7*x^2 - 4*x^3) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Andrew Howroyd, Sep 23 2019
CROSSREFS
Diagonal of A326296.
Sequence in context: A055661 A287334 A054312 * A106678 A222624 A214788
KEYWORD
nonn,easy
AUTHOR
M. Ryan Julian Jr., Sep 12 2019
STATUS
approved