The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326658 a(n) = 6*floor(n/2) + ceiling((n-1)^2/2). 2
 1, 0, 7, 8, 17, 20, 31, 36, 49, 56, 71, 80, 97, 108, 127, 140, 161, 176, 199, 216, 241, 260, 287, 308, 337, 360, 391, 416, 449, 476, 511, 540, 577, 608, 647, 680, 721, 756, 799, 836, 881, 920, 967, 1008, 1057, 1100, 1151, 1196, 1249, 1296, 1351, 1400, 1457, 1508, 1567, 1620, 1681 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) gives the maximum number of inversions in a permutation on n + 3 symbols consisting of a single n-cycle and 3 fixed points. Sequence is a diagonal of A326296. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1). FORMULA a(n) = 6*floor(n/2) + ceiling((n-1)^2/2). a(n) = A326296(3 + n, n) for n > 0. From Colin Barker, Sep 13 2019: (Start) G.f.: (1 - 2*x + 7*x^2 - 4*x^3) / ((1 - x)^3*(1 + x)). a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n >= 4. a(n) = (-3 + 7*(-1)^n + 8*n + 2*n^2) / 4. (End) MATHEMATICA Table[6*Floor[n/2] + Ceiling[(n - 1)^2/2], {n, 80}] (* Wesley Ivan Hurt, Sep 13 2019 *) PROG (PARI) a(n) = 6*floor(n/2) + ceil((n-1)^2/2) \\ Andrew Howroyd, Sep 23 2019 (PARI) Vec((1 - 2*x + 7*x^2 - 4*x^3) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Andrew Howroyd, Sep 23 2019 CROSSREFS Diagonal of A326296. Sequence in context: A055661 A287334 A054312 * A106678 A222624 A214788 Adjacent sequences:  A326655 A326656 A326657 * A326659 A326660 A326661 KEYWORD nonn,easy AUTHOR M. Ryan Julian Jr., Sep 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 07:56 EDT 2021. Contains 345416 sequences. (Running on oeis4.)