OFFSET
0,3
COMMENTS
a(n) gives the maximum number of inversions in a permutation on n + 2 symbols consisting of a single n-cycle and 2 fixed points.
Sequence is a diagonal of A326296.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(n) = 4*floor(n/2) + ceiling((n-1)^2/2).
a(n) = A326296(2 + n, n) for n > 0.
From Colin Barker, Sep 15 2019: (Start)
G.f.: (1 - 2*x + 5*x^2 - 2*x^3) / ((1 - x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n >= 4.
a(n) = (-1 + 5*(-1)^n + 4*n + 2*n^2) / 4.
(End)
E.g.f.: (1/4)*(5*exp(-x) + exp(x)*(-1 + 6*x + 2*x^2)). - Stefano Spezia, Sep 16 2019 after Colin Barker
PROG
(PARI) a(n) = 4*floor(n/2) + ceil((n-1)^2/2) \\ Andrew Howroyd, Sep 23 2019
(PARI) Vec((1 - 2*x + 5*x^2 - 2*x^3) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Andrew Howroyd, Sep 23 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. Ryan Julian Jr., Sep 12 2019
STATUS
approved