|
|
A219978
|
|
Numbers n (>= 1) such that A007781(n-1) = n^n - (n-1)^(n-1) is semiprime.
|
|
0
|
|
|
5, 6, 13, 16, 18, 21, 22, 28, 29, 37, 46, 60, 71, 84
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This is to A072164 as semiprimes A001358 are to primes A000040. Can thus be called power difference semiprimes.
|
|
LINKS
|
Table of n, a(n) for n=1..14.
Eric W. Weisstein, Power Difference Prime
|
|
FORMULA
|
{ n : A007781(n-1) in {A001358} }.
|
|
EXAMPLE
|
a(1) = 5 because 5^5 - 4^4 = 2869 = 19 * 151 is semiprime.
a(2) = 6 because 6^6 - 5^5 = 43531 = 101 * 431.
a(3) = 13 because 13^13 - 12^12 = 293959006143997 = 28201 * 10423708597.
a(4) = 16 because 16^16 - 15^15 = 18008850183328692241 = 109 * 165218809021364149.
|
|
MATHEMATICA
|
Flatten[Position[Differences[Table[n^n, {n, 85}]], _?(PrimeOmega[#]==2&)]]+1 (* Harvey P. Dale, Aug 29 2021 *)
|
|
PROG
|
(PARI) isok(n) = bigomega(n^n - (n-1)^(n-1)) == 2; \\ Michel Marcus, Feb 11 2020
|
|
CROSSREFS
|
Cf. A001358, A072164, A007781.
Sequence in context: A061437 A067245 A059176 * A326657 A303139 A322611
Adjacent sequences: A219975 A219976 A219977 * A219979 A219980 A219981
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Jonathan Vos Post, Dec 02 2012
|
|
EXTENSIONS
|
a(9)-a(13) from Charles R Greathouse IV, Dec 02 2012
a(14) from Charles R Greathouse IV, Dec 04 2012
|
|
STATUS
|
approved
|
|
|
|