login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219977
Expansion of 1/(1+x+x^2+x^3).
7
1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0
OFFSET
0,1
LINKS
Elena Barcucci, Antonio Bernini, Stefano Bilotta, Renzo Pinzani, Non-overlapping matrices, arXiv:1601.07723 [cs.DM], 2016.
Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785, 2016
Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
FORMULA
G.f.: 1/(1 +x +x^2 +x^3).
Euler transform of length 4 sequence [ -1, 0, 0, 1]. - Michael Somos, Dec 12 2012
a(n) = a(n+4) = -a(1-n). |a(n)| = A133872(n). REVERT transform is A036765. INVERT transform is A077962. - Michael Somos, Dec 12 2012
A038505(n+2) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Dec 12 2012
From Wesley Ivan Hurt, Apr 22 2015: (Start)
a(n) +a(n-1) +a(n-2) +a(n-3) = 0.
a(n) = (-1)^n/2 +(-1)^(n/2 +1/4 -(-1)^n/4)/2. (End)
EXAMPLE
G.f. = 1 - x + x^4 - x^5 + x^8 - x^9 + x^12 - x^13 + x^16 - x^17 + x^20 - x^21 + ...
MATHEMATICA
CoefficientList[Series[1/(1+x+x^2+x^3), {x, 0, 80}], x] (* or *) PadRight[{}, 120, {1, -1, 0, 0}]
LinearRecurrence[{-1, -1, -1}, {1, -1, 0}, 80] (* Harvey P. Dale, May 22 2021 *)
PROG
(PARI) {a(n) = [1, -1, 0, 0][n%4 + 1]} /* Michael Somos, Dec 12 2012 */
(PARI) Vec(1/(1+x+x^2+x^3) + O(x^100)) \\ Michel Marcus, Jan 28 2016
(Magma) m:=100; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1+x+x^2+x^3))); // Vincenzo Librandi, Apr 22 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Harvey P. Dale, Dec 02 2012
STATUS
approved