login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077962 Expansion of 1/(1+x^2+x^3). 5
1, 0, -1, -1, 1, 2, 0, -3, -2, 3, 5, -1, -8, -4, 9, 12, -5, -21, -7, 26, 28, -19, -54, -9, 73, 63, -64, -136, 1, 200, 135, -201, -335, 66, 536, 269, -602, -805, 333, 1407, 472, -1740, -1879, 1268, 3619, 611, -4887, -4230, 4276, 9117, -46, -13393, -9071, 13439, 22464, -4368, -35903, -18096, 40271, 53999 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5. [N. J. A. Sloane, Sep 16 2012]

Index entries for linear recurrences with constant coefficients, signature (0,-1,-1).

FORMULA

a(n) = (-1)^n*A077961(n).

MATHEMATICA

CoefficientList[ Series[1/(1 + x^2 + x^3), {x, 0, 70}], x] (* Robert G. Wilson v, Mar 22 2011 *)

LinearRecurrence[{0, -1, -1}, {1, 0, -1}, 70] (* Harvey P. Dale, Dec 04 2015 *)

PROG

(PARI) Vec(1/(1+x^2+x^3)+O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(1+x^2+x^3) )); // G. C. Greubel, Jun 23 2019

(Sage) (1/(1+x^2+x^3)).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jun 23 2019

(GAP) a:=[1, 0, -1];; for n in [4..70] do a[n]:=-a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 23 2019

CROSSREFS

Sequence in context: A173291 A078031 A077961 * A338101 A338490 A213607

Adjacent sequences:  A077959 A077960 A077961 * A077963 A077964 A077965

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 16:07 EDT 2021. Contains 343995 sequences. (Running on oeis4.)