OFFSET
0,4
COMMENTS
The Ca2 sums, see A180662, of triangle A108299 equal the terms of this sequence. - Johannes W. Meijer, Aug 14 2011
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,-1,1).
FORMULA
G.f.: (1-x)/(1 + x^2 - x^3).
a(n) = -a(n-2) + a(n-3); a(0)=1, a(1)=-1, a(2)=-1. - Harvey P. Dale, Apr 08 2012
MAPLE
A078031 := proc(n) option remember: coeftayl((1-x)/(1+x^2-x^3), x=0, n) end: seq(A078031(n), n=0..60); # Johannes W. Meijer, Aug 14 2011
MATHEMATICA
CoefficientList[Series[(1-x)/(1+x^2-x^3), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, -1, 1}, {1, -1, -1}, 60] (* Harvey P. Dale, Apr 08 2012 *)
PROG
(PARI) Vec((1-x)/(1+x^2-x^3)+O(x^60)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x)/(1+x^2-x^3) )); // G. C. Greubel, Aug 05 2019
(Sage) ((1-x)/(1+x^2-x^3)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 05 2019
(GAP) a:=[1, -1, -1];; for n in [4..60] do a[n]:=-a[n-2]+a[n-3]; od; a; # G. C. Greubel, Aug 05 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved