login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007781
a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.
13
1, 3, 23, 229, 2869, 43531, 776887, 15953673, 370643273, 9612579511, 275311670611, 8630788777645, 293959006143997, 10809131718965763, 426781883555301359, 18008850183328692241, 808793517812627212561
OFFSET
0,2
COMMENTS
(12n^2 + 6n + 1)^2 divides a(6n+1), where (12n^2 + 6n + 1) = (2n+1)^3 - (2n)^3 = A127854(n) = A003215(2n) are the hex (or centered hexagonal) numbers. The prime numbers of the form 12n^2 + 6n + 1 belong to A002407. - Alexander Adamchuk, Apr 09 2007
REFERENCES
Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).
LINKS
Andrew Cusumano, Problem H-656, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 45, No. 2 (2007), p. 187; A Sequence Tending To e, Solution to Problem H-656, ibid., Vol. 46-47, No. 3 (2008/2009), pp. 285-287.
Ronald K. Hoeflin, Mega Test. [Wayback Machine link]
Eric Weisstein's World of Mathematics, Power Difference Prime.
FORMULA
a(n) = A000312(n+1) - A000312(n) for n>0, a(0) = 1.
a(n) = abs(discriminant(x^(n+1)-x+1)).
E.g.f.: W(-x)/(1+W(-x)) - W(-x)/((1+W(-x))^3*x) where W is the Lambert W function. - Robert Israel, Aug 19 2015
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022
EXAMPLE
a(14) = 10809131718965763 = 3 * 61^2 * 968299894201.
MAPLE
seq( `if`(n=0, 1, (n+1)^(n+1) -n^n), n=0..20); # G. C. Greubel, Mar 05 2020
MATHEMATICA
Join[{1}, Table[(n+1)^(n+1)-n^n, {n, 20}]] (* Harvey P. Dale, Feb. 09 2011 *)
Differences[Table[n^n, {n, 0, 20}]] (* Charles R Greathouse IV, Feb 09 2011 *)
PROG
(PARI) first(m)=vector(m, i, i--; (i+1)^(i+1) - i^i) /* Anders Hellström, Aug 18 2015 */
(Magma) [1] cat [(n+1)^(n+1)-n^n: n in [1..20]]; // Vincenzo Librandi, Aug 19 2015
(Sage) [1]+[(n+1)^(n+1) -n^n for n in (1..20)] # G. C. Greubel, Mar 05 2020
KEYWORD
nonn,easy
AUTHOR
Peter McCormack (peter.mccormack(AT)its.csiro.au)
STATUS
approved