login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068955
Greatest prime factor of n^n - (n-1)^(n-1).
5
3, 23, 229, 151, 431, 776887, 14731, 109, 80317, 275311670611, 19395030961, 10423708597, 968299894201, 19428121, 165218809021364149, 808793517812627212561, 3979203955386313, 588489604729898953429, 2126173979464312447783, 5043293621028391, 90772326303985278570534379
OFFSET
2,1
LINKS
Daniel Suteu and Amiram Eldar, Table of n, a(n) for n = 2..86 (terms 2..62 from Daniel Suteu)
FORMULA
a(n) = A006530(A007781(n-1)).
EXAMPLE
A007781(14) = 10809131718965763 = 3 * 61^2 * 968299894201, therefore a(14) = 968299894201.
MAPLE
a:= n-> max(map(i-> i[1], ifactors(n^n-(n-1)^(n-1))[2])):
seq(a(n), n=2..23); # Alois P. Heinz, Mar 10 2019
MATHEMATICA
a[n_] := FactorInteger[n^n - (n-1)^(n-1)][[-1, 1]]; Array[a, 20, 2] (* Amiram Eldar, Feb 06 2020 *)
PROG
(PARI) a(n) = vecmax(factor(n^n-(n-1)^(n-1))[, 1]); \\ Daniel Suteu, Mar 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 11 2002
EXTENSIONS
a(18)-a(22) from Daniel Starodubtsev, Mar 10 2019
STATUS
approved