The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068953 Number of bases B (2 <= B <= n) such that every digit of n in base B is 0 or 1. 6
 0, 1, 2, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 5, 5, 3, 3, 3, 3, 5, 5, 3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 5, 5, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 6, 5, 3, 5, 5, 3, 3, 3, 3, 5, 5, 3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS All such bases are divisors of n or n-1, since the lowest base-B digit of n is 0 iff B | n, 1 iff B | n-1. - Robert Israel, Jul 04 2018 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE a(30)=5, since 30 written in the 5 bases 2, 3, 5, 29, 30 is 11110, 1010, 110, 11, 10. MAPLE f:= n -> nops(select(b -> convert(convert(n, base, b), set) subset {0, 1}, {\$2..n} intersect (numtheory:-divisors(n) union numtheory:-divisors(n-1)))): map(f, [\$1..200]); # Robert Israel, Jul 04 2018 MATHEMATICA a[1]=0; a[n_] := Length[Select[Rest[Union[Divisors[n], Divisors[n-1]]], Max@@IntegerDigits[n, # ]==1&]] PROG (PARI) a(n) = sum(b=2, n, #select(x->(x>1), digits(n, b)) == 0); \\ Michel Marcus, Jul 04 2018 CROSSREFS Cf. A059972. Sequence in context: A347744 A361197 A320110 * A362960 A189635 A109785 Adjacent sequences: A068950 A068951 A068952 * A068954 A068955 A068956 KEYWORD nonn,base AUTHOR Dean Hickerson, Mar 31 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 04:14 EDT 2024. Contains 371918 sequences. (Running on oeis4.)