

A361197


a(n) is the number of equations in the set {x^2 + 2y^2 = n, 2x^2 + 3y^2 = n, ..., k*x^2 + (k+1)*y^2 = n, ..., n*x^2 + (n+1)*y^2 = n} which admit at least one nonnegative integer solution.


0



1, 2, 3, 3, 3, 3, 3, 4, 4, 2, 5, 5, 3, 3, 3, 5, 4, 4, 5, 5, 5, 3, 3, 6, 4, 3, 6, 5, 5, 3, 5, 6, 4, 4, 4, 8, 3, 3, 5, 4, 6, 2, 5, 8, 6, 3, 3, 7, 6, 4, 6, 6, 4, 6, 3, 7, 4, 2, 7, 5, 6, 3, 6, 8, 3, 5, 5, 6, 7, 2, 5, 8, 4, 4, 6, 8, 4, 2, 6, 7, 8, 4, 5, 9, 3, 5, 4, 5, 6, 4, 6, 5, 4, 3, 4, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Compared to the "linear" case given by A356770, the "quadratic" case given by this sequence has a more chaotic behavior.
a(n) >= 2 for all n > 1 since (n1)*x^2 + n*y^2 = n and n*x^2 + (n+1)*y^2 = n always admit one integer solution (respectively (0,1) and (1,0)).
Conjecture: a(n) = 2 for infinitely many n.


LINKS



EXAMPLE

a(5) = 3. Consider the equations: x^2 + 2y^2 = 5, 2x^2 + 3y^2 = 5, 3x^2 + 4y^2 = 5, 4x^2 + 5y^2 = 5, 5x^2 + 6y^2 = 5. Only three of them admit at least one nonnegative integer solution, since 3x^2 + 4y^2 = 5 and x^2 + 2y^2 = 5 have no nonnegative integer solutions.


MATHEMATICA

b[m_] := m;
f[n_] := Table[Dimensions[Solve[b[k]*x^2 + b[k + 1]*y^2 == n, {x, y}, NonNegativeIntegers]][[1]], {k, 1, n}];


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



