login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201205
Bisection of half-convolution of Catalan sequence A000108; even part.
5
1, 3, 23, 227, 2529, 30275, 380162, 4939443, 65844845, 895451117, 12374186318, 173257703723, 2452607696798, 35042725663002, 504697422982484, 7319313029400467, 106793147620036005, 1566546633240722681, 23089471526179716182, 341774295456352388245
OFFSET
0,2
COMMENTS
For the definition of the half-convolution of a sequence with itself see a comment to A201204.
The odd part of this bisection is found under A065097.
LINKS
FORMULA
a(n) = sum(Catalan(k)*Catalan(2*n-k),k=0..n), n>=0, with Catalan(n)=A000108(n).
O.g.f: Ge(x)=(catao(x)+cata2(x))/2 with catao(x):= sum(Catalan(2*k+1)*x^k,k=0..infty) = (cata(sqrt(x)) - cata(-sqrt(x)))/(2*x), with the o.g.f. cata(x) of A000108, and cata2(x):=sum(Catalan(n)^2,n=0..infty) given in A001246 as (-1 + hypergeom( [-1/2,-1/2],[1],16*x))/(4*x).
a(n) = A028364(2n,n) = A067323(2n,n). - Alois P. Heinz, Nov 28 2015
a(n) = (A000108(2*n+1) + A000108(n)^2)/2. - Vladimir Reshetnikov, Oct 03 2016
MAPLE
a:= proc(n) option remember; `if`(n<2, 1+2*n,
(2*n*(256*n^5-544*n^4+256*n^3+75*n^2-69*n+12)*a(n-1)
-(8*(4*n-5))*(4*n-3)*(8*n^2+n-1)*(2*n-3)^2*a(n-2))/
((2*n+1)*n*(8*n^2-15*n+6)*(n+1)^2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 28 2015
MATHEMATICA
Table[(CatalanNumber[2 n + 1] + CatalanNumber[n]^2)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 02 2012
EXTENSIONS
Cross-reference corrected by Robert Israel, Jun 06 2014
STATUS
approved