login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206763
G.f.: Product_{n>=1} [ (1 - (-x)^n) / (1 - (n-1)^n*x^n) ]^(1/n).
2
1, 1, 0, 3, 23, 225, 2824, 42670, 762286, 15647321, 363901749, 9443387329, 270721307582, 8493470965716, 289518611494068, 10653599202688527, 420933469388468297, 17773313165985120798, 798686060913371460133, 38058408270727983373232
OFFSET
0,4
COMMENTS
Here sigma(n,k) equals the sum of the k-th powers of the divisors of n.
FORMULA
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k) * sigma(n,k) * (-1)^(n-k) ).
Logarithmic derivative yields A206764.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^3 + 23*x^4 + 225*x^5 + 2824*x^6 + 42670*x^7 +...
where the g.f. equals the product:
A(x) = (1+x)/(1-0*x) * ((1-x^2)/(1-1^2*x^2))^(1/2) * ((1+x^3)/(1-2^3*x^3))^(1/3) * ((1-x^4)/(1-3^4*x^4))^(1/4) * ((1+x^5)/(1-4^5*x^5))^(1/5) *...
The logarithm equals the l.g.f. of A206764:
log(A(x)) = x - x^2/2 + 10*x^3/3 + 79*x^4/4 + 1026*x^5/5 + 15686*x^6/6 +...
PROG
(PARI) {a(n)=polcoeff(prod(k=1, n, ((1-(-1)^k*x^k)/(1-(k-1)^k*x^k +x*O(x^n)))^(1/k)), n)}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=1, m, binomial(m, k)*sigma(m, k)*(-1)^(m-k))+x*O(x^n))), n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
Cf. A206764 (log), A205814, A205811.
Sequence in context: A202997 A093162 A328808 * A306154 A201205 A068954
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2012
STATUS
approved