login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206764
a(n) = Sum_{k=1..n} binomial(n,k) * sigma(n,k) * (-1)^(n-k).
1
1, -1, 10, 79, 1026, 15686, 279938, 5771359, 134218243, 3487832974, 100000000002, 3138673052878, 106993205379074, 3937454749863382, 155568096631586820, 6568441588686506943, 295147905179352825858, 14063102470280932000757, 708235345355337676357634
OFFSET
1,3
COMMENTS
Here sigma(n,k) equals the sum of the k-th powers of the divisors of n.
FORMULA
a(n) ~ exp(-1) * n^n. - Vaclav Kotesovec, Oct 25 2024
EXAMPLE
L.g.f.: L(x) = x - x^2/2 + 10*x^3/3 + 79*x^4/4 + 1026*x^5/5 + 15686*x^6/6 +...
Exponentiation yields the g.f. of A206763:
exp(L(x)) = 1 + x + 3*x^3 + 23*x^4 + 225*x^5 + 2824*x^6 + 42670*x^7 +...
Illustration of terms.
a(2) = -2*sigma(2,1) + 1*sigma(2,2) = -2*3 + 1*5 = -1;
a(3) = 3*sigma(3,1) - 3*sigma(3,2) + 1*sigma(3,3) = 3*4 - 3*10 + 1*28 = 10;
a(4) = -4*sigma(4,1) + 6*sigma(4,2) - 4*sigma(4,3) + 1*sigma(4,4) = -4*7 + 6*21 - 4*73 + 1*273 = 79.
MATHEMATICA
Table[Sum[Binomial[n, k] * DivisorSigma[k, n] * (-1)^(n-k), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 25 2024 *)
PROG
(PARI) {a(n)=sum(k=1, n, binomial(n, k)*sigma(n, k)*(-1)^(n-k))}
(PARI) {a(n)=n*polcoeff(sum(k=1, n, (1/k)*log((1-(-x)^k)/(1-(k-1)^k*x^k +x*O(x^n)))), n)}
for(n=1, 21, print1(a(n), ", "))
CROSSREFS
Cf. A206763 (exp), A205815, A205812.
Sequence in context: A036732 A251309 A377348 * A253649 A244729 A027790
KEYWORD
sign,easy
AUTHOR
Paul D. Hanna, Feb 12 2012
STATUS
approved