login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253649
Coefficients in the expansion of sn(t * x, m) / t in powers of x where t = sqrt( -1/2 - sqrt(1/3)), m = -7 + sqrt(48), and sn() is a Jacobi elliptic function.
1
1, 1, 0, -10, -80, 0, 17600, 418000, 0, -496672000, -23576960000, 0, 91442700800000, 7255463564800000, 0, -69994087116448000000, -8354181454767104000000, 0, 169165728883243642880000000, 28336045031124313753600000000, 0, -1072156342430107319243161600000000
OFFSET
0,4
FORMULA
The e.g.f. A(x) = y satisfies 0 = 2 - 2 * y'*y' + y*y'' + y^2.
The e.g.f. A(x) satisfies 0 = A(x) * A(y) * A(x-y) + A(y) * A(z) * A(y-z) - A(x) * A(z) * A(x-z) - A(x-y) * A(x-z) * A(y-z) for all x, y, z.
E.g.f.: Sum_{k>=0} a(k) * x^(2*k+1) / (2*k+1)! = sn(t * x, m) / t where t = sqrt( -1/2 - sqrt(1/3)), m = -7 + sqrt(48), and sn() is a Jacobi elliptic function.
a(3*n + 2) = 0. a(n) = (-1)^floor(n/3) * A063902(n) unless n == 2 (mod 3).
EXAMPLE
G.f. = 1 + x - 10*x^3 - 80*x^4 + 17600*x^6 + 418000*x^7 - 496672000*x^9 - ...
E.g.f. = x + x^3/6 - x^7/504 - x^9/4536 + x^13/353808 + 19/59439744*x^15 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[{t = Sqrt[-1/2 - Sqrt[1/3]], m = -7 + Sqrt[48]}, SeriesCoefficient[ JacobiSN[ t x, m] / t, {x, 0, 2 n + 1}] (2 n + 1)! // Simplify]];
PROG
(PARI) {a(n) = my(A, c); if( n<0, 0, A = x + x^3/6; for(k=3, n, A += O(x^(2*k+2)); A = x + intformal( intformal( 2*(A'^2 - 1) / A - A)); c = polcoeff( A, 2*k + 1) * k / (k-2); A = truncate( A + O(x^(2*k))) + c * x^(2*k+1)); (2*n + 1)! * polcoeff( A, 2*n + 1))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 02 2015
STATUS
approved