login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000575 Tenth column of quintinomial coefficients.
(Formerly M4729 N2021)
4
10, 80, 365, 1246, 3535, 8800, 19855, 41470, 81367, 151580, 270270, 464100, 771290, 1245488, 1960610, 3016820, 4547840, 6729800, 9791859, 14028850, 19816225, 27627600, 38055225, 51833730, 69867525, 93262260, 123360780, 161784040, 210477476, 271763360 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

In the Carlitz et al. reference a(n)= Q_{5,n+2}(2), n >= 0, with a(n)=binomial(11+n,n+2)-(n+3)*binomial(n+6,n+2), (eq.(3.3), p. 356, with n=5, m->n+2,r=2). Q_{5,m}(2) is the number of sequences (i_1,i_2,...,i_m) with i_s, s=1,...,m, from {1,2,3,4,5} (repetitions allowed), with exactly 2 increases between successive elements (first position is counted as an increase).

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374, p. 351.

FORMULA

a(n) = A035343(n+3, 9) = binomial(n+6, 6)*(n^3+42*n^2+677*n+5040)/(9!/6!).

G.f.: (10-20*x+15*x^2-4*x^3)/(1-x)^10; numerator polynomial is N5(9, x) from the array A063422.

a(n) = 10*C(n+3,3) + 40*C(n+3,4) + 65*C(n+3,5) + 56*C(n+3,6) + 28*C(n+3,7) + 8*C(n+3,8) + C(n+3,9) (see comment in A213887). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012

a(n) = Sum_{k=1..10} (-1)^k * binomial(10,k) * a(n-k), a(0)=10. - G. C. Greubel, Aug 03 2015

a(n) = [x^9] (1+x+x^2+x^3+x^4)^(n+3). - Joerg Arndt, Aug 04 2015

MATHEMATICA

CoefficientList[Series[(10-20*x+15*x^2-4*x^3)/(1-x)^10, {x, 0, 50}], x](* Vincenzo Librandi, Mar 28 2012 *)

PROG

(PARI) a(n) = polcoeff((1+x+x^2+x^3+x^4)^(n+3), 9); \\ Joerg Arndt, Aug 04 2015

CROSSREFS

Sequence in context: A253649 A244729 A027790 * A220485 A055285 A036070

Adjacent sequences:  A000572 A000573 A000574 * A000576 A000577 A000578

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Comments and more terms from Wolfdieter Lang, Aug 29 2001

More terms from Sean A. Irvine, Nov 24 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 20:32 EST 2018. Contains 299330 sequences. (Running on oeis4.)