OFFSET
4,1
REFERENCES
S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
LINKS
Sheng Lin, Xiaoguang Liu and Douglas S. Stones, Gang Wang, Table of n, K(4,n) for n=4..150
P. G. Doyle, The number of Latin rectangles, arXiv:math/0703896v1 [math.CO], 2007.
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
Douglas Stones, Doyle's formula for the number of reduced 6xn Latin rectangles
Douglas Stones, Enumeration Of Latin Squares And Rectangles
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
R. J. Stones, S. Lin, X. Liu, G. Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1.
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Brendan McKay and Eric Rogoyski
STATUS
approved