login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000573
Number of 4 X n normalized Latin rectangles.
3
4, 56, 6552, 1293216, 420909504, 207624560256, 147174521059584, 143968880078466048, 188237563987982390784, 320510030393570671051776, 695457005987768649183581184, 1888143905499961681708381310976, 6314083806394358817244705266941952, 25655084790196439186603345691314159616
OFFSET
4,1
REFERENCES
S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
LINKS
Sheng Lin, Xiaoguang Liu and Douglas S. Stones, Gang Wang, Table of n, K(4,n) for n=4..150
P. G. Doyle, The number of Latin rectangles, arXiv:math/0703896v1 [math.CO], 2007.
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
R. J. Stones, S. Lin, X. Liu, G. Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1.
CROSSREFS
Sequence in context: A327145 A089516 A361217 * A070019 A056075 A000315
KEYWORD
nonn,nice
AUTHOR
Brendan McKay and Eric Rogoyski
STATUS
approved