login
A003170
Number of 4 X n Latin rectangles in which the first row is in order.
(Formerly M5172)
2
24, 1344, 393120, 155185920, 88390995840, 69761852246016, 74175958614030336, 103657593656495554560, 186355188348102566876160, 423073240119513285788344320, 1193404222275011001999025311744, 4123706289611916312851104783171584, 17237448791456599571078045378751528960
OFFSET
4,1
REFERENCES
S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. W. Light, Jr., A procedure for the enumeration of 4 X n Latin rectangles, Fib. Quart., 11 (1973), 241-246.
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
PROG
(GAP) ChooseList:=function(a, B) local x, p, i; x:=a; p:=1; for i in B do p:=p*Binomial(x, i); x:=x-i; od; return p; end;;
DoylePartitions:=function(n) return Union(List(Partitions(n+8, 8)-1, P->PermutationsList(P))); end;;
DoyleF1:=function(A) return A[1]+A[3]+A[2]+A[4]; end;;
DoyleF2:=function(A) return A[1]+A[2]+A[5]+A[6]; end;;
DoyleF3:=function(A) return A[1]+A[3]+A[5]+A[7]; end;;
DoyleF12:=function(A) return A[1]+A[2]; end;;
DoyleF23:=function(A) return A[1]+A[5]; end;;
DoyleF13:=function(A) return A[1]+A[3]; end;;
DoyleF123:=function(A) return A[1]; end;;
DoyleG:=function(A) return DoyleF1(A)*DoyleF2(A)*DoyleF3(A) -DoyleF12(A)*DoyleF3(A) -DoyleF23(A)*DoyleF1(A) -DoyleF13(A)*DoyleF2(A) +2*DoyleF123(A); end;;
DoyleGProduct:=function(A) local i, p, B; p:=1; for i in [1..8] do B:=List(A, j->j); B[i]:=B[i]-1; B[8]:=B[8]+1; p:=p*DoyleG(B)^A[i]; od; return p; end;;
NrFourLineNormalisedLatinRectanglesDoyle:=function(n) local count, A; count:=0; for A in DoylePartitions(n) do count:=count+(-1)^(A[2]+A[3]+A[5]+2*(A[4]+A[6]+A[7])+3*A[8])*ChooseList(n, A)*DoyleGProduct(A); od; return count; end;; # Douglas Stones (douglas.stones(AT)sci.monash.edu.au), Apr 01 2009, Sep 05 2009
CROSSREFS
Equals A000573*(n-1)!/(n-4)!.
Sequence in context: A187029 A186967 A068294 * A160310 A269271 A347857
KEYWORD
nonn,nice
EXTENSIONS
Doron Zeilberger pointed out that was an error in a(10), which has now been corrected.
More terms from Douglas Stones (douglas.stones(AT)sci.monash.edu.au), Apr 01 2009
STATUS
approved