login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000577 Number of triangular polyominoes (or triangular polyforms, or polyiamonds) with n cells (turning over is allowed, holes are allowed, must be connected along edges).
(Formerly M2374 N0941)
68
1, 1, 1, 3, 4, 12, 24, 66, 160, 448, 1186, 3334, 9235, 26166, 73983, 211297, 604107, 1736328, 5000593, 14448984, 41835738, 121419260, 353045291, 1028452717, 3000800627, 8769216722, 25661961898, 75195166667, 220605519559, 647943626796, 1905104762320, 5607039506627, 16517895669575 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
If holes are not allowed, we get A070765. - Joseph Myers, Apr 20 2009
It is a consequence of Madras's 1999 pattern theorem that almost all polyiamonds have holes, i.e., lim_{n->oo} A070765(n)/A000577(n) = 0. - Johann Peters, Jan 06 2024
REFERENCES
F. Harary, Graphical enumeration problems; in Graph Theory and Theoretical Physics, ed. F. Harary, Academic Press, London, 1967, pp. 1-41.
W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
Ed Pegg, Jr., Polyform puzzles, in Tribute to a Mathemagician, Peters, 2005, pp. 119-125.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
P. J. Torbijn, Polyiamonds, J. Rec. Math., 2 (1969), 216-227.
LINKS
A. Clarke, Polyiamonds
S. T. Coffin, The Puzzling World of Polyhedral Dissections, Chap 2, Table 1.
R. K. Guy, O'Beirne's Hexiamond, in The Mathemagician and the Pied Puzzler - A Collection in Tribute to Martin Gardner, Ed. E. R. Berlekamp and T. Rogers, A. K. Peters, 1999, 85-96 [broken link?]
J. and J. Hindriks, Dutchman Designs: Quilting Patterns [broken link?]
Kadon Enterprises, The 66 polyominoes of order 8 (from a puzzle)
Kadon Enterprises, Home page
M. Keller, Counting polyforms.
N. Madras, A pattern theorem for lattice clusters, arXiv:math/9902161 [math.PR], 1999; Annals of Combinatorics, 3 (1999), 357-384.
Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, Extremal {p, q}-Animals, Ann. Comb. (2023), p. 3.
Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), 609-640.
Eric Weisstein's World of Mathematics, Polyiamond
CROSSREFS
Cf. also A000105, A000228, A103465.
Sequence in context: A291023 A084921 A070765 * A333163 A111758 A264484
KEYWORD
nonn,hard,nice
AUTHOR
EXTENSIONS
More terms from David W. Wilson
a(19) from Achim Flammenkamp, Feb 15 1999
a(20), a(21), a(22), a(23) and a(24) from Brendan Owen (brendan_owen(AT)yahoo.com), Jan 01 2002
a(25) to a(28) from Joseph Myers, Sep 24 2002
Link updated by William Rex Marshall, Dec 16 2009
a(29) and a(30) from Joseph Myers, Nov 21 2010
More terms from John Mason, Oct 28 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 15:53 EDT 2024. Contains 371905 sequences. (Running on oeis4.)