login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063422
Coefficient array for certain numerator polynomials N5(n,x), n >= 0 (rising powers of x) used for quintinomials (also called pentanomials).
5
1, 1, 1, 1, 1, 4, -6, 4, -1, 3, -2, -2, 3, -1, 2, 2, -8, 7, -2, 1, 6, -14, 11, -3, 10, -20, 15, -4, 6, 2, -37, 65, -56, 28, -8, 1, 3, 16, -61, 78, -42, 0, 12, -6, 1, 1, 22, -57, 35, 42, -84, 60, -21, 3, 20, -25, -64, 196, -224, 136, -44, 6, 10, 35, -219, 420
OFFSET
0,6
COMMENTS
The g.f. of column k of array A035343(n,k) (quintinomial coefficients) is (x^(ceiling(k/4)))*N5(k,x)/(1-x)^(k+1).
The sequence of degrees for the polynomials N5(n,x) is [0, 0, 0, 0, 0, 3, 4, 4, 4, 3, 7, 8, 8, 7, 7,...] for n >= 0.
Row sums N5(n,1)=1 for all n.
FORMULA
a(n, m) = [x^m]N5(n, x), n, m >= 0, with N5(n, x)= sum(((1-x)^(j-1))*(x^(b(c(n), j)))*N5(n-j, x), j=1..4), N5(n, x)= 1 for n=0..3 and b(c(n), j) := 1 if 1<= j <= c(n) else 0, with c(n) := 3 if mod(n, 4)=0 else c(n) := mod(n, 4)-1; (hence b(0, j)=0, j=1..4).
EXAMPLE
{1}; {1}; {1}; {1}; {1}; {4,-6,4,-1}; {3,-2,-2,3,-1}; {2,2,-8,7,-2}; {1,6,-14,11,-3}; ...
c=2: b(2,1)= 1 = b(2,2), b(2,3)= 0 =b(2,4).
N5(6,x)=3-2*x-2*x^2+3*x^3-x^4.
CROSSREFS
Sequence in context: A378420 A087108 A021687 * A261638 A010670 A240444
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Jul 27 2001
STATUS
approved