login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063420
Coefficient array for certain numerator polynomials N3(n,x), n >= 0 (rising powers of x) used for trinomials.
4
1, 1, 1, 2, -1, 1, 1, -1, 3, -2, 1, 3, -4, 1, 4, -2, -2, 1, 1, 6, -9, 3, 5, 0, -9, 6, -1, 1, 10, -15, 3, 3, -1, 6, 5, -24, 18, -4, 1, 15, -20, -6, 18, -8, 1, 7, 14, -49, 36, -4, -4, 1, 1, 21, -21, -35, 60, -30, 5, 8, 28, -84, 50, 20, -30, 10, -1, 1, 28, -14
OFFSET
0,4
COMMENTS
The g.f. of column k of array A027907(n,k) (trinomial coefficients) is (x^(ceiling(k/2)))*N3(k,x)/(1-x)^(k+1).
The sequence of degrees for the polynomials N3(n,x) is [0, 0, 0, 1, 2, 1, 3, 3, 3, 4, 5, 4, 6, 6, 6,...] for n >= 0.
Row sums N3(n,1)=1 for all n.
FORMULA
a(n, m) = [x^m]N3(n, x), n, m >= 0, with N3(n, x)= sum(((1-x)^(j-1))*(x^(b(c(n), j)))*N3(n-j, x), j=1..2), N3(n, x)= 1 for n=0, 1 and b(c(n), j) := 1 if 1<= j <= c(n) else 0, with c(n) := 1 if mod(n, 2)=0 else c(n) := mod(n, 2)-1; (hence b(0, j)=0, j=1..2).
EXAMPLE
{1}; {1}; {1}; {2,-1}; {1,1,-1}; {3,-2}; {1,3,-4,1}; {4,-2,-2,1}; ...
c=1: b(1,1)=1, b(1,2)=0.
N3(7,x)=4-2*x-2*x^2+5*x^3.
CROSSREFS
Sequence in context: A337375 A196228 A133364 * A347917 A254631 A029385
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Jul 27 2001
STATUS
approved