login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196228
Number of ways of writing n as sum of a prime and a perfect power.
4
0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 2, 2, 2, 3, 1, 2, 1, 1, 1, 4, 2, 2, 3, 1, 4, 2, 2, 3, 1, 2, 5, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 3, 2, 4, 2, 2, 3, 3, 4, 2, 1, 2, 2, 2, 4, 3, 1, 2, 3, 3, 5, 4, 2, 2, 3, 2, 2, 5, 1, 4, 2, 3, 4, 2, 1, 5, 3, 1, 4, 4
OFFSET
1,6
COMMENTS
In this case, perfect power does not include 0.
Different from A133364. The first difference is at n=74, where a(n) = 2 but A133364(n) = 3.
FORMULA
a(n) = Card_{n=i+j where i is in A000040 and j is in A001597}.
G.f.: (Sum_{k>=1} x^prime(k))*(Sum_{k = i^j, i>=1, j>=2} x^k). - Ilya Gutkovskiy, Feb 18 2017
EXAMPLE
a(1) = a(2) = a(5) = a(1549) = a(1771561) = 0, see A119748.
MATHEMATICA
nn = 100; pwrs = Union[{1}, Flatten[Table[Range[2, Floor[nn^(1/ex)]]^ex, {ex, 2, Floor[Log[2, nn]]}]]]; pp = Prime[Range[PrimePi[nn]]]; t = Table[0, {nn}]; Do[ t[[i[[1]]]] = i[[2]], {i, Tally[Sort[Select[Flatten[Outer[Plus, pwrs, pp]], # <= nn &]]]}]; t (* T. D. Noe, Sep 29 2011 *)
CROSSREFS
Cf. A119748 (zero terms).
Sequence in context: A212171 A337255 A337375 * A133364 A063420 A347917
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Sep 29 2011
EXTENSIONS
Edited by Franklin T. Adams-Watters, Sep 29 2011
STATUS
approved