login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035343 Triangle of coefficients in expansion of (1 + x + x^2 + x^3 + x^4)^n. 27
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1, 1, 6, 21, 56, 126, 246, 426, 666 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Coefficient of x^k in (1 + x + x^2 + x^3 + x^4)^n is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 4 objects to fall in each urn. - N-E. Fahssi, Mar 16 2008
The n-th row has 4n+1 terms (A016813). - Michel Marcus, Sep 08 2013
Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (1,2), (1,3), (1,4). - Nicholas Ham, Sep 14 2018
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78, 16. for q=5.
D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).
LINKS
Moussa Ahmia and Hacene Belbachir, Preserving log-convexity for generalized Pascal triangles, Electronic Journal of Combinatorics, 19(2) (2012), #P16. - From N. J. A. Sloane, Oct 13 2012
Said Amrouche, Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
Armen G. Bagdasaryan, Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
Tomislav Došlić, Block allocation of a sequential resource, Ars Mathematica Contemporanea (2019) Vol. 17, 79-88.
Nour-Eddine Fahssi, Polynomial Triangles Revisited, arXiv:1202.0228 [math.CO], (25-July-2012).
D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, Applications of Fibonacci Numbers 4 (1991), 77-90. (Annotated scanned copy)
S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2006.
J. E. Freund, Restricted Occupancy Theory - A Generalization of Pascal's Triangle, American Mathematical Monthly, Vol. 63, No. 1 (1956), pp. 20-27.
Kuhapatanakul, Kantaphon; Anantakitpaisal, Pornpawee The k-nacci triangle and applications. Cogent Math. 4, Article ID 1333293, 13 p. (2017).
T. Neuschel, A Note on Extended Binomial Coefficients, J. Int. Seq. 17 (2014) # 14.10.4.
Eric Rowland, A matrix generalization of a theorem of Fine, arXiv:1704.05872 [math.NT], 2017. See p.5.
Eric Rowland, A matrix generalization of a theorem of Fine, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A18.
Bao-Xuan Zhu, Linear transformations and strong q-log-concavity for certain combinatorial triangle, arXiv preprint arXiv:1605.00257 [math.CO], 2016.
FORMULA
T(n,k) = Sum_{i = 0..floor(k/5)} (-1)^i*binomial(n,i)*binomial(n+k-1-5*i,n-1) for n >= 0 and 0 <= k <= 4*n. - Peter Bala, Sep 07 2013
EXAMPLE
Triangle begins:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
[0] 1;
[1] 1, 1, 1, 1, 1;
[2] 1, 2, 3, 4, 5, 4, 3, 2, 1;
[3] 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1;
[4] ...
MAPLE
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):
#Display the 5-nomials as a table
r := 5: rows := 10:
for n from 0 to rows do
seq(rnomial(r, n, k), k = 0..(r-1)*n)
end do;
# Peter Bala, Sep 07 2013
MATHEMATICA
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4)^n, x], {n, 0, 10}]] (* T. D. Noe, Apr 04 2011 *)
PROG
(Maxima) pentanomial(n, k):=coeff(expand((1+x+x^2+x^3+x^4)^n), x, k);
create_list(pentanomial(n, k), n, 0, 6, k, 0, 4*n); \\ Emanuele Munarini, Mar 15 2011
(PARI) row(n) = Vec(((1 + x + x^2 + x^3 + x^4)^n) + O(x^(4*n+1)))
trianglerows(n) = for(k=0, n-1, print(row(k)))
/* Print initial 5 rows of triangle as follows */
trianglerows(5) \\ Felix Fröhlich, Aug 26 2018
CROSSREFS
Sequence in context: A017890 A134011 A280913 * A017880 A086144 A131974
KEYWORD
nonn,tabf,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 01:47 EST 2023. Contains 367729 sequences. (Running on oeis4.)