The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063265 Septinomial (also called heptanomial) coefficient array. 15
 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 116, 149, 180, 206, 224, 231, 224, 206, 180, 149, 116, 84, 56, 35 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 COMMENTS The sequence of step width of this staircase array is [1,6,6,...], hence the degree sequence for the row polynomials is [0,6,12,18,...]= A008588. The column sequences (without leading zeros) are for k=0..6 those of the lower triangular array A007318 (Pascal) and for k=7..9: A063267, A063417, A063418. Row sums give A000420 (powers of 7). Central coefficients give A025012. REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78. LINKS T. D. Noe, Rows n = 0..25, flattened S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle (arXiv:0802.2654) FORMULA a(n, k)=0 if n=-1 or k<0 or k >= 6*n; a(0, 0)=1; a(n, k)= sum(a(n-1, k-j), j=0..6) else. G.f. for row n: (sum(x^j, j=0..6))^n. G.f. for column k: (x^(ceiling(k/6)))*N7(k, x)/(1-x)^(k+1) with the row polynomials of the staircase array A063266(k, m). T(n,k) = sum {i = 0..floor(k/7)} (-1)^i*binomial(n,i)*binomial(n+k-1-7*i,n-1) for n >= 0 and 0 <= k <= 6*n. - Peter Bala, Sep 07 2013 EXAMPLE {1}; {1, 1, 1, 1, 1, 1, 1}; {1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1}; ... N7(k,x)= 1 for k=0..6, N7(7,x)= 6-15*x+20*x^2-15*x^3+6*x^4-x^5 (from A063266). MAPLE #Define the r-nomial coefficients for r = 1, 2, 3, ... rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)): #Display the 7-nomials as a table r := 7:  rows := 10: for n from 0 to rows do seq(rnomial(r, n, k), k = 0..(r-1)*n) end do; # Peter Bala, Sep 07 2013 MATHEMATICA Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *) CROSSREFS The q-nomial arrays are for q=2..8: A007318 (Pascal), A027907, A008287, A035343, A063260, A063265, A171890. Sequence in context: A307785 A331305 A279313 * A211011 A232242 A287655 Adjacent sequences:  A063262 A063263 A063264 * A063266 A063267 A063268 KEYWORD nonn,easy,tabf AUTHOR Wolfdieter Lang, Jul 24 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 01:20 EDT 2021. Contains 343117 sequences. (Running on oeis4.)