login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331305
Lexicographically earliest infinite sequence such that a(i) = a(j) => A286153(i) = A286153(j) for all i, j.
3
1, 2, 3, 4, 5, 6, 7, 6, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 13, 9, 30, 31, 32, 33, 34, 35, 25, 36, 21, 37, 38, 39, 40, 41, 42, 37, 30, 29, 35, 43, 44, 45, 46, 47, 48, 49, 31, 50, 28, 51, 52, 53, 54, 55, 56, 57, 58, 59, 26, 20, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A286153 (when considered as an one-dimensional sequence), or equally, of A286155.
For all i, j:
a(i) = a(j) => A091255(i) = A091255(j).
PROG
(PARI)
up_to = 25425; \\ = binomial(225+1, 2)
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A001477pairton(a, b) = (((a+b)^2 + 3*a + b)/2);
A286153sq(n, k) = if(n>k, A001477pairton(bitxor(n, k), k), A001477pairton(n, bitxor(n, k)));
A286153list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A286153sq(col, (a-(col-1))))); (v); };
v331305 = rgs_transform(A286153list(up_to));
A331305(n) = v331305[n]; \\ Antti Karttunen, Jan 19 2020
CROSSREFS
Cf. also A331306, A331307.
Sequence in context: A058223 A245355 A307785 * A279313 A063265 A211011
KEYWORD
nonn,tabl,look
AUTHOR
Antti Karttunen, Jan 19 2020
STATUS
approved