login
A331305
Lexicographically earliest infinite sequence such that a(i) = a(j) => A286153(i) = A286153(j) for all i, j.
3
1, 2, 3, 4, 5, 6, 7, 6, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 13, 9, 30, 31, 32, 33, 34, 35, 25, 36, 21, 37, 38, 39, 40, 41, 42, 37, 30, 29, 35, 43, 44, 45, 46, 47, 48, 49, 31, 50, 28, 51, 52, 53, 54, 55, 56, 57, 58, 59, 26, 20, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A286153 (when considered as an one-dimensional sequence), or equally, of A286155.
For all i, j:
a(i) = a(j) => A091255(i) = A091255(j).
PROG
(PARI)
up_to = 25425; \\ = binomial(225+1, 2)
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A001477pairton(a, b) = (((a+b)^2 + 3*a + b)/2);
A286153sq(n, k) = if(n>k, A001477pairton(bitxor(n, k), k), A001477pairton(n, bitxor(n, k)));
A286153list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A286153sq(col, (a-(col-1))))); (v); };
v331305 = rgs_transform(A286153list(up_to));
A331305(n) = v331305[n]; \\ Antti Karttunen, Jan 19 2020
CROSSREFS
Cf. also A331306, A331307.
Sequence in context: A058223 A245355 A307785 * A279313 A063265 A211011
KEYWORD
nonn,tabl,look
AUTHOR
Antti Karttunen, Jan 19 2020
STATUS
approved