Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 10 2020 01:33:19
%S 1,2,3,4,5,6,7,6,4,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
%T 25,26,27,28,29,13,9,30,31,32,33,34,35,25,36,21,37,38,39,40,41,42,37,
%U 30,29,35,43,44,45,46,47,48,49,31,50,28,51,52,53,54,55,56,57,58,59,26,20,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79
%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A286153(i) = A286153(j) for all i, j.
%C Restricted growth sequence transform of A286153 (when considered as an one-dimensional sequence), or equally, of A286155.
%C For all i, j:
%C a(i) = a(j) => A091255(i) = A091255(j).
%H Antti Karttunen, <a href="/A331305/b331305.txt">Table of n, a(n) for n = 1..25425</a>
%H <a href="/index/Ge#GF2X">Index entries for sequences related to polynomials in ring GF(2)[X]</a>
%o (PARI)
%o up_to = 25425; \\ = binomial(225+1,2)
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A001477pairton(a,b) = (((a+b)^2 + 3*a + b)/2);
%o A286153sq(n, k) = if(n>k,A001477pairton(bitxor(n,k),k),A001477pairton(n,bitxor(n,k)));
%o A286153list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A286153sq(col,(a-(col-1))))); (v); };
%o v331305 = rgs_transform(A286153list(up_to));
%o A331305(n) = v331305[n]; \\ _Antti Karttunen_, Jan 19 2020
%Y Cf. A091255, A286153, A286155.
%Y Cf. also A331306, A331307.
%K nonn,tabl,look
%O 1,2
%A _Antti Karttunen_, Jan 19 2020