

A331303


Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = min(n, A263273(n)), and A263273 is bijective base3 reverse.


2



1, 2, 3, 4, 5, 6, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 11, 19, 15, 14, 20, 21, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 27, 33, 34, 35, 36, 37, 38, 39, 40, 30, 41, 42, 38, 43, 44, 45, 46, 47, 25, 48, 29, 33, 49, 50, 41, 51, 40, 28, 49, 37, 36, 52, 53, 43, 54, 55, 31, 51, 44, 39, 54, 56, 46, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Restricted growth sequence transform of A331173. See comments in that sequence.


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..100000


PROG

(PARI)
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A030102(n) = { my(r=[n%3]); while(0<n\=3, r=concat(n%3, r)); subst(Polrev(r), x, 3); };
A263273 = n > if(!n, n, A030102(n/(3^valuation(n, 3))) * (3^valuation(n, 3)));
A331173(n) = min(n, A263273(n));
v331303 = rgs_transform(vector(1+up_to, n, A331173(n1)));
A331303(n) = v331303[1+n];


CROSSREFS

Cf. A263273, A331173.
Cf. also A331300.
Sequence in context: A005599 A071934 A337642 * A161658 A066853 A264856
Adjacent sequences: A331300 A331301 A331302 * A331304 A331305 A331306


KEYWORD

nonn,base


AUTHOR

Antti Karttunen, Jan 18 2020


STATUS

approved



