OFFSET
0,3
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Michael Gilleland, Some Self-Similar Integer Sequences
Lukas Spiegelhofer, A digit reversal property for an analogue of Stern's sequence, arXiv:1709.05651 [math.NT], 2017. See Theorem 1.1.
FORMULA
a(n) = t(n,0) with t(n,r) = if n=0 then r else t(floor(n/3),r*3+(n mod 3)). - Reinhard Zumkeller, Mar 04 2010
G.f. G(x) satisfies: G(x) = (1+x+x^2)*G(x^3) - (1+2*x)*(x + 2*Sum_{m>=0} 3^m*x^(3^(m+1)+1)/(x^3-1). - Robert Israel, Dec 24 2015
EXAMPLE
a(17) = 25 because 17 in base 3 is 122, and backwards that is 221, which is 25 in base 10.
a(18) = 2 because 18 in base 3 is 200, and backwards that is 2.
MAPLE
a030102:= proc(n) option remember;
local y;
y:= n mod 3;
3^ilog[3](n)*y + procname((n-y)/3)
end proc:
for i from 0 to 2 do a030102(i):= i od:
seq(a030102(i), i=0..100); # Robert Israel, Dec 24 2015
# alternative
A030102 := proc(n)
local r ;
r := ListTools[Reverse](convert(n, base, 3)) ;
add(op(i, r)*3^(i-1), i=1..nops(r)) ;
end proc: # R. J. Mathar, May 28 2016
MATHEMATICA
A030102[n_] := FromDigits[Reverse@IntegerDigits[n, 3], 3] (* JungHwan Min, Dec 23 2015 *)
FromDigits[#, 3]&/@(Reverse/@IntegerDigits[Range[0, 80], 3]) (* Harvey P. Dale, Feb 05 2020 *)
PROG
(PARI) a(n, b=3)=subst(Polrev(base(n, b)), x, b) /* where */
base(n, b)={my(a=[n%b]); while(0<n\=b, a=concat(n%b, a)); a} \\ M. F. Hasler, Nov 04 2011
(PARI) a(n) = fromdigits(Vecrev(digits(n, 3)), 3); \\ Michel Marcus, Oct 10 2017
(Haskell)
a030102 = foldl (\v d -> 3 * v + d) 0 . a030341_row
-- Reinhard Zumkeller, Dec 16 2013
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved