The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008287 Triangle of quadrinomial coefficients, row n is the sequence of coefficients of (1 + x + x^2 + x^3)^n. 38
 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1, 1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1, 1, 6, 21, 56, 120, 216, 336, 456, 546, 580, 546, 456, 336, 216, 120, 56, 21, 6, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Coefficient of x^k in (1 + x + x^2 + x^3)^n is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 3 objects to fall in each urn. - N-E. Fahssi, Mar 16 2008 Rows of A008287 mod 2 converted to decimal equals A177882. - Vladimir Shevelev, Jan 02 2011 T(n,k) is the number of compositions of k into n parts p, each part 0<=p<=3. Adding 1 to each part, as a corollary, T(n,k) is the number of compositions of n+k into n parts p where 1<=p<=4. E.g., T(2,3)=4 since 3=0+3=3+0=1+2=2+1. In general, the entry (n,k) of the (l+1)-nomial triangle gives the number of compositions of k into n parts p, each part 0<=p<=l. - Steffen Eger, Jun 18 2011 Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (1,2), (1,3). - Joerg Arndt, Jul 05 2011 T(n-1,k-1) is the number of 3-compositions of n with zeros having k parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020 REFERENCES B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 17. L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78. D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer). LINKS Alois P. Heinz, Rows n = 0..100, flattened (first 26 rows from T. D. Noe) Moussa Ahmia and Hacene Belbachir, Preserving log-convexity for generalized Pascal triangles, Electronic Journal of Combinatorics, 19(2) (2012), #P16. - N. J. A. Sloane, Oct 13 2012 Said Amrouche and Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020. Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77. Hacène Belbachir and Oussama Igueroufa, Combinatorial interpretation of bisnomial coefficients and Generalized Catalan numbers, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 47-54. Hacène Belbachir and Yassine Otmani, Quadrinomial-Like Versions for Wolstenholme, Morley and Glaisher Congruences, Integers (2023) Vol. 23. Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq., Vol. 22 (2019), Article 19.8.3. Spiros D. Dafnis, Frosso S. Makri, and Andreas N. Philippou, Restricted occupancy of s kinds of cells and generalized Pascal triangles, Fibonacci Quart. 45 (2007), no. 4, 347-356. L. Euler, On the expansion of the power of any polynomial (1+x+x^2+x^3+x^4+etc.)^n, arXiv:math/0505425 [math.HO], 2005. L. Euler, De evolutione potestatis polynomialis cuiuscunque (1+x+x^2+x^3+x^4+etc.)^n, E709. Nour-Eddine Fahssi, Polynomial Triangles Revisited, arXiv:1202.0228 [math.CO], (25-July-2012). D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, Applications of Fibonacci Numbers 4 (1991), 77-90. (Annotated scanned copy) J. E. Freund, Restricted Occupancy Theory - A Generalization of Pascal's Triangle, American Mathematical Monthly, Vol. 63, No. 1 (1956), pp. 20-27. S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008. W. Florek and T. Lulek, Combinatorial analysis of magnetic configurations, Séminaire Lotharingien de Combinatoire, B26d (1991), 12 pp. R. K. Guy, Letter to N. J. A. Sloane, 1987 Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020. Kantaphon Kuhapatanakul and Anantakitpaisal, The k-nacci triangle and applications, Cogent Math. 4, Article ID 1333293, 13 p. (2017). T. Neuschel, A Note on Extended Binomial Coefficients, J. Int. Seq. 17 (2014) # 14.10.4. Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.] Claudia Smith and Verner E. Hoggatt, Jr. , A Study of the Maximal Values in Pascal's Quadrinomial Triangle, Fibonacci Quart. 17 (1979), no. 3, 264-269. Bao-Xuan Zhu, Linear transformations and strong q-log-concavity for certain combinatorial triangle, arXiv preprint arXiv:1605.00257 [math.CO], 2016. FORMULA n-th row is formed by expanding (1+x+x^2+x^3)^n. From Vladimir Shevelev, Dec 15 2010: (Start) T(n,0) = 1; T(n,3*n) = 1; T(n,k) = T(n,3*n-k); T(n,k) = 0, iff k<0 or k>3*n; Sum{k=0..3*n} T(n,k) = 4^n; Sum{k=0..3*n}((-1)^k)*T(n,k)=0 for n > 0; [corrected by Werner Schulte, Sep 09 2015] T(n,k) = Sum{i=0..floor(k/2)} C(n,i)*C(n,k-2*i); T(n+1,k) = T(n,k-3)+T(n,k-2)+T(n,k-1)+T(n,k). (End) T(n,k) = Sum_{i = 0..floor(k/4)} (-1)^i*C(n,i)*C(n+k-1-4*i,n-1) for n >= 0 and 0 <= k <= 3*n. - Peter Bala, Sep 07 2013 G.f.: 1/(1 - ( x + y*x + y^2*x +y^3*x )). - Geoffrey Critzer, Feb 05 2014 T(n,k) = Sum_{j=0..k} (-2)^j*binomial(n,j)*binomial(3*n-2*j,k-j) for n >= 0 and 0 <= k <= 3*n (conjectured). - Werner Schulte, Sep 09 2015 EXAMPLE Triangle begins 1; 1,1,1,1; 1,2,3,4,3,2,1; 1,3,6,10,12,12,10,6,3,1; ... MAPLE #Define the r-nomial coefficients for r = 1, 2, 3, ... rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)): #Display the 4-nomials as a table r := 4: rows := 10: for n from 0 to rows do seq(rnomial(r, n, k), k = 0..(r-1)*n) end do; # Peter Bala, Sep 07 2013 # second Maple program: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))((1+x+x^2+x^3)^n): seq(T(n), n=0..10); # Alois P. Heinz, Aug 17 2018 MATHEMATICA Flatten[Table[CoefficientList[(1 + x + x^2 + x^3)^n, x], {n, 0, 10}]] (* T. D. Noe, Apr 04 2011 *) T[n_, k_] := Sum[Binomial[n, i] Binomial[n, k-2i], {i, 0, k/2}]; Table[T[n, k], {n, 0, 6}, {k, 0, 3n}] // Flatten (* Jean-François Alcover, Feb 02 2018 *) PROG (Maxima) quadrinomial(n, k):=coeff(expand((1+x+x^2+x^3)^n), x, k); create_list(quadrinomial(n, k), n, 0, 8, k, 0, 3*n); /* Emanuele Munarini, Mar 15 2011 */ (Haskell) a008287 n = a008287_list !! n a008287_list = concat \$ iterate ([1, 1, 1, 1] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs _ * _ = [] -- Reinhard Zumkeller, Apr 02 2011 CROSSREFS Cf. A007318, A027907, A177882. Sequence in context: A017869 A107469 A167600 * A017859 A171456 A028356 Adjacent sequences: A008284 A008285 A008286 * A008288 A008289 A008290 KEYWORD nonn,tabf,easy,nice AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 07:21 EDT 2024. Contains 374575 sequences. (Running on oeis4.)