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PASCAL'S TRIANGLE: TOP GUN
OR JUST ONE OF THE GANG?

%t H4

Daniel C. Fielder and Cecil O. Alford

INTRODUCTION

Pascal’s triangle can appear as a member of classes of triangular arrays where

mmably no class member should be ranked in importance over any other. Two such cases
came to mind were the multinomial triangles [6] and the Hoggatt triangles [2]. No doubt

there are others. We selected the multinomial triangles. Was Pascal’s triangle only a binomial
triangle in a sea of trinomial, quadrinomial, pentanomial, etc., triangles, or might it exhibit a
significant influence on the makeup of the other multinomial triangles? We admit a certain
prejudice in our choice. Computer experimentation with partition counting, large multinornial
expansions, and generating functions using computer algebra systems (muMath, Derive,
Mathematica) hinted at a definite Pascal influence. A few years ago, such experimentation

would have been virtually impossible.

In this note, we take advantage of features of multinomial triangles to search for
influence of Pascal rows and diagonals on their counterparts in the other multinomial triangles.

After having seen our results, we leave it to the reader to answer the title question.

SOME INTERESTING AND USEFUL OBSERVATIONS ON MULTINOMIAL TRIANGLES

If the coefficients of the expansions of (14x+x2+x*+--+x)™ for fixed t are
symmetrically arranged by rows for m=0, 1, 2, . . . , the results are triangular arrays of integers

popularly known as multinomial triangles. The degenerate triangle consisting of a single vertical
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line of 1’s is of order t=0. The bi- or 2-nomial triangle of order t=1 is Pascal’s triangle. We
take the liberty of discarding the Latin or Greek prefix where convenient and use instead a
numerical term, (t+1)-nomial. As with the Pascal triangle, all (t+1)-nomial triangles exhibit
symmetry about a vertical centerline. The symbol <'£>z serves to identify uniquely the integer
in position p of row m of triangle ¢, i.e., the (t+1)-nomial triangle. All m, p, and t may take on

non-negative integer values 0, 1, 2, 3, . . .. An example row m is shown in (1).

(a0 (e o= (B - Gt Gt e (e 1)

There are many straight paths through (t41)-nomial triangles which have interesting numerical
properties and which might qualify as diagonals of some type. However, there seems to be one
defacto “diagonal” sequence designation. The defacto diagonal sequences appear as columns in
the left-justified versions of multinomial triangles (See Hoggatt and Bicknell [6]). In the

nomenclature of this note, diagonal d of triangle t is the series of integer coefficients

LA A A EEAN RN R
dfeo\ a Joo\ a4 oo\ a Joo\ a Je (2)

Although the functionally equivalent left-justified version of the (t+1)-nomial triangle
was very useful to Hoggatt and Bicknell {6] in the study of diagonal generating functions and
generalized Fibonacci sequences and to Greenbury [5] for the direct display of generalized
Fibonacci sequences, we use the isosceles form where it suits our purposes. Several (t+1)-nomial
triangles through m=>5 are shown in Figure 1. Diagonals can be traced on the triangles of
Figure 1 by starting at the first integer of (2) and moving “left t/2, down one.” Half column
widths apply for odd t.

m t=0 t=1 t=2

0 1 1 1

1 1 1 1 1 1 1

2 1 12 1 1 2 3 2 1

3 1 1 3 3 1 1 3 6 7 6 3 1

4 1 1 4 6 4 1 1 10 16 19 16 10 4 1
5 1 1 5 10 10 5 1 1 15 30 45 51 45 30 15 5 1
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1 5 15 35 65 101 135 1556 155 135 101 65 35 15 5 1

T, 395758

1 1 1 1 1
1 2 3 4 5 4 3 2 1
1 3 6 10 15 18 19 18 15 10 6 3 1
1 4 10 20 35 52 68 80 85 80 68 52 35 20 10 4 1
1 5 15 35 70 121 185 255 320 365 381 365 320 25518512170 35 15 5 1
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Figure 1. Some partial (t+1)-nomial or Multinomial Triangles.

One of the features all (t+1)-triangles share in common is, except for the single 1 in row
zero, that every element is the sum of the (t41) consecutive elements centered on and placed
I-' stly above it. It is also obvious that there are mt+1 integers per row and that a row sum
gls (t+1)™. For the Pascal triangle these are often a student’s first discoveries. To satisfy
the construction for all mt41 row elements, it may be necessary to visualize some blank
positions outside the triangle filled with 0’s. The construction idea is important in later
manipulation of the general (t+1)-nomial triangle. In addition, the concept can be the basis of

spectacular digital computer spreadsheet displays of multinomial triangles.

It can be observed that the class of isosceles form triangles is partitioned into two
subclasses according to column structure. The triangles for even t have an odd number of
elements in upper row sums. This leads to triangles with unbroken columns. For odd ¢, the

result is row-staggered columns. The column difference is not obvious in left-justified triangles.

Two crucial features of multinomial triangles are:

(a) The first t coefficients, <'6'>t_1, <'1">l_1, <?>t-l’ <t'_"1>l_1, of row m of triangle t-1 equal

m m

term-by-term the first ¢ coefficients, {')');, N '; FREE l’:"l ¢» of row m of triangle t.

- and
(b) The first t+1 coefficients, <'(7;>u <"'>t, <'§>l, <';'>,, of row m of triangle t equal term-by-

term the first t+1 coefficients,

o
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<r%1> <f%1+x> <r%1+z> <r%1+e>
d y d ’ d * ) d

of diagonal d=m-I of Pascal’s triangle. It can be seen that coefficient <t $1>t and all beyond are

always less than their diagonal counterparts from Pascal’s triangle.

Observation of (t+1)-nomial triangles reinforces the central réle so many times
accorded Pascal’s triangle. Aside from being a member of other sets of triangles [5], it is a
member of the class of all (t+1)-nomial triangles as well as a member of the subclass with row-
staggered columns. Another observation indicated that sets of diagonals from Pascal’s triangle
are included in every (¢+1)-nomial triangle. For t> 2 the diagonals 0, 1,2, ..., tof a (t+1)-
nomial triangle are identically the same numbered diagonals of Pascal’s triangle. The equality
ends with diagonal t. This fact can be directly associated with the abrupt change in the form of
diagonal generating functions experienced by Hoggatt and Bicknell. (See [6], bottom of p. 341
and eq. (1), p. 342.) It was the last observation, coupled with Hoggatt and Bicknells’ analytic
results, which challenged us to search for a layered mathematical structure for (t+1)-triangles
where outer layers could be repeatedly “peeled” off to reveal other layers functionally related to
parts of Pascal’s triangle. .Since this analysis of multinomial triangles appeared new, we

concentrated our computer experimental efforts on it. f D

GENERAL DISCUSSION OI' COEFFICIENT CALCULATIONS

One obvious way to find the members of row m of a (¢+1)-nomial triangle is to expand
(1+x+x2+~--+x')m and collect the (integer) coefficients of powers of x in ascending order from 0
through tm. This is an effortless task even for tremendous t and m values if muMath, Derive,
Mathematica, or other computer algebra systems perform the computations. The method,

however, is certainly not new.

Our approach to obtaining the coefficients of expanded (1+x+x2+---—+—xt)m is semi-

heuristic. We found two different ways and, correspondingly, two different formulations.

In the first, we establish a tabular procedure in which column sums are the coefficients
of the expansion, and the column designators are the corresponding powers of x. Through a very
selective choice of row values for the examples, a pattern emerges. The pattern evokes a very
safe conjecture that the coefficients of row m of triangle t are functions of row m of Pascal’s
triangle and rows m down through 0 of triangle t—1. By concentrating on how single columns

are formed, we can predict general formulas for single row members, the <';,1>t’s.

9
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In the second, we capitalized on the fact that parts of certain diagonals of Pascal’s
triangle are also parts of rows of (t+1)-nomial triangles. In experimental examples of widely
varying size, we forced diagonals of Pascal’s triangles to equal, term-by-term, the row
coefficients of rows of a (t+1)-nomial triangles. As will be detailed later, through careful
(crafty?) choice of forcing terms it is shown that coefficients of (t+1)-triangles can be found

from rows and diagonals of Pascal’s triangle alone!

MULTINOMIAL TRIANGLE COEFFICIENTS. FIRST METHOD

After rephrasing, material from Parzan (see [8], page 40, formula 118) states

(Crrd = § 0§ § (k A ) ()0 (1.
ko =0 kl =0 kl = 0™1 t
ko+ ki +ky ook, =m, (3)

where the integers

C (kokl'-'--k,) - (ﬁ) “

are universally called multinomial coefficients. From a combinatorics point of view, they are the
numbers of permutations, or arrangements, of m objects, k; of one kind, k; of another kind, .. .k,
of the last kind. However, the coefficients found in (d+1)-nomial, i. e., multinomial, triangles
do not, in general, equal multinomial coefficients. The reason is simple. The coefficients of
multinomial triangles are coefficients of powers of x in (x0+xl+x2+-'-+x‘)m. In (3) there may
be several different multinomial coefficients having the same total power of x. This establishes
multinomial triangle coefficients as being permutations or sums of permutations. We use
restricted partitions of the (tm+1) powers of x in the expansion (x0+x1+x2+- 4™ to guide us

to the permutations which eventually sum to the (d+1)-nomial triangle coefficients.

As a first example, consider row 4 of the 3-nomial triangle. The corresponding
expansion is (xX+x'+x%)* for =2 and m=4. The mt+1 = 9 powers of x in the expansion are 0,
1,2, 3,4,5,6, 7, 8 These are the column headings for the subsequent Jayers of rows. Because
a power of x in the expansion is always the sum of powers of x from each of the four
(x0+x1+x2)’s, the nine powers can be partitioned into four-part partitions with 0 considered as a
possible member of a partition. Before tabulating the set of four-part partitions, however,

consider the same partitions with all 0’s excluded except for the inevitable, single 0 for the zero

C
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power of x. Including the single zero partition, we have now the restricted partitions of 0, 1, 2,
3, 4, 5, 6, 7, 8 whose member size cannot exceed t=2 and whose number of members cannot

exceed m=4.

Netto (see [7], page 122) suggests a very simple way of generating unrestricted partitions
of an integer n. An algorithm based on Netto’s work and adapted for computer use appears in
Fielder [1] and Fielder and Alford [3]. To demonstrate the restricted partitions described in the
previous paragraph, columns of unrestricted partitions of 0, 1, 2, 3, 4, 5, 6, 7, 8 are recorded as
generated by the algorithm. Those partitions which cannot pass the restriction test, either
because of member size or number of members or both, are crossed out. The survivors are
retained in the order of their generation on their same relative rows. Table 1 verifies the choice

of restricted partitions needed in our example development.

Powers of x

0 1 2 3 4 5 6 7 8
0 1 11 111 1111 FEEE T FE T E R EFEE T E R EEEREE R
2 12 112 1112 FEEET S EEEET. SN EEEEEY:)
-3 13 113 FEET) SEEEE S EEE )
22 122 1122 11122
4 4 114 14 14
23 123 1323 311123
-5 222 1222 11222
15 115 1115
24 124 1124
33 133 1133
-6 293 1223
16 2222
25 116
34 12
- 134
224
233
17
26
35
44
-8

Table 1. Table of Unrestricted Partitions of Powers of x in Order Generated by Special Algorithm. .

Desired Restricted Partitions Shown Not Cancelled




PASCAL’S TRIANGLE: TOP GUN OR JUST ONE OF THE GANG? 83

In anticipation of what is to follow, the successful partitions from Table 1, with the zero

members restored, are tabulated as shown in Table 2 below.

Powers of x

0 1 2 3 4 5 6 7 8
0000 0001 0011 0111 1111
0002 0012 0112 1112
0022 1122 1122

0222 1222
2222

Table 2. Intentionally Arranged Set of m=4-Part Restricted Partitions of x With No Member

Less Than 0 or Greater Than =2

By considering the partition members as “objects”, derangements of the partitions yield
the permutation counts which equal the desired coefficients. This is shown in Table 3 where the

“layers” are accentuated by boundary lines.

LIN

U Powers of x

0 1 2 3 4 5 6 7 8
Al/a1 0! 41/3110 412020 Al/311 41741 0!
43010 41721000 421110 41301

41/21! a2y
a3t 430
41/410!
1 4 10 16 19 16 10 4 1

Table 3. Permutation Counts Derived From Set of m=4-Part Restricted Partitions of Table 2.

The column totals are the coefficients shown at the bottom of Table 3. Now suppose that
binary coefficient (8) is factored out of each permutation of layer 0, (‘1') is factored out of each
coefficient of layer 1, (;) is factored out of layer 2, (g) is factored out of layer 3, and (3) is

factored out of layer 4.

The new tabular arrangement with the factored binomial coefficients in the left column

is shown in Table 4.
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CONCLUDING REMARKS

By approaching the construction of multinomial triangles through partition and
derangement techniques, we were able, with judicious forcing of component positions, to observe
successive patterns of Pascal triangle components in the completed multinomial triangles. As a
result, we were able to find finite, closed summation formulas for elements of multinomial
triangles in terms of rows of the next lower order multinomial triangles and one row only of
Pascal’s triangle. This first formula applied to trinomial triangles uses rows of Pascal’s triangle.
Further work produced general formulas for elements of multiomial triangles of any size (not

just trinomial) using one row and one diagonal from Pascal’s triangle.

We showed that any diagonal of any multinomial triangle can be completely expressed
using at most one row and one diagonal of Pascal’s triangle. The diagonal properties
documented were homogeneous difference equations, generating functions, and general sequence

terms.

Again, we highly recommend the experimental opportunities which modern computer
algebra systems offer.
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